skip to main content

This content will become publicly available on December 1, 2023

Title: Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels
Growth of the microfluidics field has triggered numerous advances in focusing and separating microparticles, with such systems rapidly finding applications in biomedical, chemical, and environmental fields. The use of shear-thinning viscoelastic fluids in microfluidic channels is leading to evolution of elasto-inertial focusing. Herein, we showed that the interplay between the elastic and shear-gradient lift forces, as well as the secondary flow transversal drag force that is caused by the non-zero second normal stress difference, lead to different particle focusing patterns in the elasto-inertial regime. Experiments and 3D simulations were performed to study the effects of flowrate, particle size, and the shear-thinning extent of the fluid on the focusing patterns. The Giesekus constitutive equation was used in the simulations to capture the shear-thinning and viscoelastic behaviors of the solution used in the experiments. At low flowrate, with Weissenberg number Wi ~ O(1), both the elastic force and secondary flow effects push particles towards the channel center. However, at a high flowrate, Wi ~ O(10), the elastic force direction is reversed in the central regions. This remarkable behavior of the elastic force, combined with the enhanced shear-gradient lift at the high flowrate, pushes particles away from the channel center. Additionally, a precise prediction of more » the focusing position can only be made when the shear-thinning extent of the fluid is correctly estimated in the modeling. The shear-thinning also gives rise to the unique behavior of the inertial forces near the channel walls which is linked with the ‘warped’ velocity profile in such fluids. « less
Authors:
; ; ; ;
Award ID(s):
1841509 1841473
Publication Date:
NSF-PAR ID:
10390288
Journal Name:
Micromachines
Volume:
13
Issue:
12
Page Range or eLocation-ID:
2131
ISSN:
2072-666X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, full 3-D numerical simulations are performed to study the combined effects of elastic and inertial forces along the Y and Z-midline of the channel. Ultimately, simulation results are compared and matched with experimental fluorescent streak images of the focusing of particles under the same parametric conditions. We reported that shear-gradient (FSG), N2-induced secondary flow transversal drag (FSF), and elastic (FEL) lift are the main forces responsible for the focusing of particles in the elasto-inertial regime.
  2. Having a basic understanding of non-Newtonian fluid flow through porous media, which usually consist of series of expansions and contractions, is of importance for enhanced oil recovery, groundwater remediation, microfluidic particle manipulation, etc. The flow in contraction and/or expansion microchannel is unbounded in the primary direction and has been widely studied before. In contrast, there has been very little work on the understanding of such flow in an expansion–contraction microchannel with a confined cavity. We investigate the flow of five types of non-Newtonian fluids with distinct rheological properties and water through a planar single-cavity microchannel. All fluids are tested in a similarly wide range of flow rates, from which the observed flow regimes and vortex development are summarized in the same dimensionless parameter spaces for a unified understanding of the effects of fluid inertia, shear thinning, and elasticity as well as confinement. Our results indicate that fluid inertia is responsible for developing vortices in the expansion flow, which is trivially affected by the confinement. Fluid shear thinning causes flow separations on the contraction walls, and the interplay between the effects of shear thinning and inertia is dictated by the confinement. Fluid elasticity introduces instability and asymmetry to the contraction flowmore »of polymers with long chains while suppressing the fluid inertia-induced expansion flow vortices. However, the formation and fluctuation of such elasto-inertial fluid vortices exhibit strong digressions from the unconfined flow pattern in a contraction–expansion microchannel of similar dimensions.« less
  3. The motion of cells orthogonal to the direction of main flow is of importance in natural and engineered systems. The lateral movement of red blood cells (RBCs) distal to sudden expansion is considered to influence the formation and progression of thrombosis in venous valves, aortic aneurysms, and blood-circulating devices and is also a determining parameter for cell separation applications in flow-focusing microfluidic devices. Although it is known that the unique geometry of venous valves alters the blood flow patterns and cell distribution in venous valve sinuses, the interactions between fluid flow and RBCs have not been elucidated. Here, using a dilute cell suspension in an in vitro microfluidic model of a venous valve, we quantified the spatial distribution of RBCs by microscopy and image analysis, and using micro-particle image velocimetry and 3D computational fluid dynamics simulations, we analyzed the complex flow patterns. The results show that the local hematocrit in the valve pockets is spatially heterogeneous and is significantly different from the feed hematocrit. Above a threshold shear rate, the inertial separation of streamlines and lift forces contribute to an uneven distribution of RBCs in the vortices, the entrapment of RBCs in the vortices, and non-monotonic wall shear stresses inmore »the valve pockets. Our experimental and computational characterization provides insights into the complex interactions between fluid flow, RBC distribution, and wall shear rates in venous valve mimics, which is of relevance to understanding the pathophysiology of thrombosis and improving cell separation efficiency.

    « less
  4. The formation and evolution of a heterogeneous flow and flow reversal are examined in highly elastic, gel-like wormlike micelles (WLMs) formed from an amphiphilic triblock poloxamer P234 in 2M NaCl. A combination of linear viscoelastic, steady shear, and creep rheology demonstrate that these WLMs have a yield stress and exhibit viscoelastic aging, similar to some soft glassy materials. Nonlinear shear rheology and rheoparticle tracking velocimetry reveal that these poloxamer WLMs undergo a period of strong elastic recoil and flow reversal after the onset of shear startup. As flow reversal subsides, a fluidized high shear rate region and a nearly immobile low shear rate region of fluid form, accompanied by wall slip and elastic instabilities. The features of this flow heterogeneity are reminiscent of those for aging yield stress fluids, where the heterogeneous flow forms during the initial stress overshoot and is sensitive to the inherent stress gradient of the flow geometry. Additionally, macroscopic bands that form transiently above a critical shear rate become “trapped” due to viscoelastic aging in the nearly immobile region. This early onset of the heterogeneous flow during the rapidly decreasing portion of the stress overshoot differs from that typically observed in shear banding WLMs and ismore »proposed to be necessary for observing significant flow reversal. Exploring the early-time, transient behavior of this WLM gel with rheology similar to both WLM solutions and soft glassy materials provides new insights into spatially heterogeneous flows in both of these complex fluids.« less
  5. Proper pain management is well understood to be one of the fundamental aspects of a healthy postoperative recovery in conjunction with mobility and nutrition. Approximately, 10% of patients prescribed opioids after surgery continue to use opioids in the long-term and as little as 10 days on opioids can result in addiction. In an effort to provide physicians with an alternative pain management technique, this work evaluates the material properties of a novel local anesthetic delivery system designed for controlled release of bupivacaine for 72 hours. The formulation utilizes solid-lipid microparticles that encapsulate the hydrophobic molecule bupivacaine in its free-base form. The lipid microparticles are suspended in a non-crosslinked hyaluronic acid hydrogel, which acts as the microparticle carrier. Two different particle manufacturing techniques, milling and hot homogenization, were evaluated in this work. The hot homogenized particles had a slower and more controlled release than the milled particles. Rheological techniques revealed that the suspension remains a viscoelastic fluid when loaded with either particle type up to 25% (w/v) particles densities. Furthermore, the shear thinning properties of the suspension media, hyaluronic acid hydrogel, were conserved when bupivacaine-loaded solid-lipid microparticles were loaded up to densities of 25% (w/v) particle loading. The force during injection wasmore »measured for suspension formulations with varying hyaluronic acid hydrogel concentrations, particle densities, particle types and particle sizes. The results indicate that the formulation viscosity is highly dependent on particle density, but hyaluronic acid hydrogel is required for lowering injection forces as well as minimizing clogging events.

    « less