skip to main content


Title: Molecular Geometry‐Directed Self‐Recognition in the Self‐Assembly of Giant Amphiphiles
Abstract

Three sets of polyoxometalate (POM)‐based amphiphilic hybrid macromolecules with different rigidity in their organic tails are used as models to understand the effect of molecular rigidity on their possible self‐recognition feature during self‐assembly processes. Self‐recognition is achieved in the mixed solution of two structurally similar, sphere‐rigid T‐shape‐linked oligofluorene(TOF4) rod amphiphiles, with the hydrophilic clusters being Anderson (Anderson‐TOF4) and Dawson (Dawson‐TOF4), respectively. Anderson‐TOF4is observed to self‐assemble into onion‐like multilayer structures and Dawson‐TOF4forms multilayer vesicles. The self‐assembly is controlled by the interdigitation of hydrophobic rods and the counterion‐mediated attraction among charged hydrophilic inorganic clusters. When the hydrophobic blocks are less rigid, e.g., partially rigid polystyrene and fully flexible alkyl chains, self‐recognition is not observed, attributing to the flexible conformation of hydrophobic molecules in the solvophobic domain. This study reveals that the self‐recognition among amphiphiles can be achieved by the geometrical limitation of the supramolecular structure due to the rigidity of solvophobic domains.

 
more » « less
Award ID(s):
1808115 1904397
NSF-PAR ID:
10390316
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
44
Issue:
1
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Peptide nucleic acids (PNAs) are nucleic acid analogs with hybridization properties and enzymatic stability superior to that of DNA. In addition to gene targeting applications, PNAs have garnered significant attention as bio‐polymers due to the Watson–Crick‐based molecular recognition and flexibility of synthesis. Here, PNA amphiphiles are engineered using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γ  PNA) amphiphiles self‐assemble into spherical vesicles. Further, nano‐assemblies (NA) are formulated using the amphiphilic γ  PNA as a polymer via ethanol injection‐based protocols. Comprehensive head‐on comparison of the physicochemical and cellular uptake properties of PNA derived self‐ and NA is performed. Small‐angle neutron and X‐ray scattering analysis reveal ellipsoidal morphology of γ  PNA NA that results in superior cellular delivery compate to the spherical self‐assembly. Next, the functional activities of γ  PNA self‐and NA in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis‐based assays are compared. Overall, it is established that γ  PNA amphiphile is a functionally active bio‐polymer to formulate NA for a wide range of biomedical applications.

     
    more » « less
  2. Abstract

    Herein, we report the photoinitiated polymerization‐induced self‐assembly (photo‐PISA) of spherical micelles consisting of proapoptotic peptide–polymer amphiphiles. The one‐pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL−1) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide‐functionalized nanoparticles imbued the proapoptotic “KLA” peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo‐PISA in the large‐scale synthesis of functional, proteolytically resistant peptide–polymer conjugates for intracellular delivery.

     
    more » « less
  3. Abstract

    Herein, we report the photoinitiated polymerization‐induced self‐assembly (photo‐PISA) of spherical micelles consisting of proapoptotic peptide–polymer amphiphiles. The one‐pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL−1) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide‐functionalized nanoparticles imbued the proapoptotic “KLA” peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo‐PISA in the large‐scale synthesis of functional, proteolytically resistant peptide–polymer conjugates for intracellular delivery.

     
    more » « less
  4. Abstract

    Poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate) (PTMA) redox polymer–based nano‐objects are synthesized by polymerization‐induced self‐assembly with poly[oligo(ethylene glycol) methyl ether methacrylate] and poly[(4‐methacryloyloxy)‐2,2,6,6‐tetramethylpiperidinium chloride] as hydrophilic macro‐chain transfer agents. These hydrophilic blocks are used in order to stabilize hydrophobic PTMA blocks in aqueous medium. The accordingly obtained spherical nano‐objects are observed via transmission electron microscopy analysis. Cyclic voltammetry measurements indicate that the nature and the length of coronal blocks influence the redox process of the PTMA core blocks. Moreover, these electroactive nano‐objects display low viscosities with a shear‐thinning behavior, making them suitable as cathode‐active materials for aqueous flow‐assisted electrochemical systems.

     
    more » « less
  5. Abstract

    A series of rod‐shaped polyoxometalates (POMs) [Bu4N]7[Mo6O18NC(CH2O)3MnMo6O18(OCH2)3CNMo6O18] and [Bu4N]7[ArNMo6O17NC(CH2O)3MnMo6O18(OCH2)3CNMo6O17NAr] (Ar=2,6‐dimethylphenyl, naphthyl and 1‐methylnaphthyl) were chosen to study the effects of cation–π interaction on macroionic self‐assembly. Diffusion ordered spectroscopy (DOSY) and isothermal titration calorimetry (ITC) techniques show that the binding affinity between the POMs and Zn2+ions is enhanced significantly after grafting aromatic groups onto the clusters, leading to the effective replacement of tetrabutylammonium counterions (TBAs) upon the addition of ZnCl2. The incorporation of aromatic groups results in the significant contribution of cation–π interaction to the self‐assembly, as confirmed by the opposite trend of assembly size vs. ionic strength when compared with those without aromatic groups. The small difference between two aromatic groups toward the Zn2+ions is amplified after combining with the clusters, which consequently triggers the self‐recognition behavior between two highly similar macroanions.

     
    more » « less