skip to main content

Title: Evaluating commercial thermoplastic materials in fused deposition modeling 3D printing for their compatibility with DNA storage and analysis by quantitative polymerase chain reaction
Nucleic acids are ubiquitous in biological samples and can be sensitively detected using nucleic acid amplification assays. To achieve highly accurate and reliable results, nucleic acid isolation and purification is often required and can limit the accessibility of these assays. Encapsulation of these workflows onto a single device may be achieved through fabrication methodologies featuring commercial three-dimensional (3D) printers. This study aims to characterize fused deposition modeling (FDM) filaments based on their compatibility with nucleic acid storage using quantitative polymerase chain reaction (qPCR). To study the adsorption of nucleic acids, storage vessels were fabricated using six common thermoplastics including: polylactic acid (PLA), nylon, acrylonitrile butadiene styrene (ABS), co-polyester (CPE), polycarbonate (PC), and polypropylene (PP). DNA adsorption of a short 98 base pair and a longer 830 base pair fragment to the walls of the vessel was shown to vary significantly among the polymer materials as well as the color varieties of the same polymer. PLA storage vessels were found to adsorb the least amount of the 98 base pair DNA after 12 hours of storage in 2.5 M NaCl TE buffer whereas the ABS and PC vessels adsorbed up to 97.2 ± 0.2% and 97.5 ± 0.2%. DNA adsorption could be reduced by decreasing the layer height of the 3D printed object, thereby increasing the functionality of the ABS storage vessel. Nylon was found to desorb qPCR inhibiting components into the stored solution which led to erroneous DNA quantification data from qPCR analysis.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Analytical Methods
Page Range / eLocation ID:
2682 to 2688
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Xeno-nucleic acids (XNAs) are synthetic genetic polymers with backbone structures composed of non-ribose or non-deoxyribose sugars. Phosphonomethylthreosyl nucleic acid (pTNA), a type of XNA that does not base pair with DNA or RNA, has been suggested as a possible genetic material for storing synthetic biology information in cells. A critical step in this process is the synthesis of XNA episomes using laboratory-evolved polymerases to copy DNA information into XNA. Here, we investigate the polymerase recognition of pTNA nucleotides using X-ray crystallography to capture the post-catalytic complex of engineered polymerases following the sequential addition of two pTNA nucleotides onto the 3′-end of a DNA primer. High-resolution crystal structures reveal that the polymerase mediates Watson–Crick base pairing between the extended pTNA adducts and the DNA template. Comparative analysis studies demonstrate that the sugar conformation and backbone position of pTNA are structurally more similar to threose nucleic acid than DNA even though pTNA and DNA share the same six-atom backbone repeat length. Collectively, these findings provide new insight into the structural determinants that guide the enzymatic synthesis of an orthogonal genetic polymer, and may lead to the discovery of new variants that function with enhanced activity.

    more » « less
  2. null (Ed.)
    Abstract Background Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. Methods Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption–extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. Results SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. Conclusions The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers. 
    more » « less
  3. null (Ed.)
    Intercalating ds-DNA/RNA with small molecules can play an essential role in controlling the electron transmission probability for molecular electronics applications such as biosensors, single-molecule transistors, and data storage. However, its applications are limited due to a lack of understanding the nature of intercalation and electron transport mechanisms. We addressed this long-standing problem by studying the effect of intercalation on both the molecular structure and charge transport along the nucleic acids using molecular dynamics simulations and first-principle calculations coupled with Green’s function method, respectively. The study on anthraquinone and anthraquinone-neomycin conjugate intercalation into short nucleic acids reveals some universal features: 1) the intercalation affects the transmission by two mechanisms: a) inducing energy levels within the bandgap and b) shifting the location of the Fermi energy with respect to the molecular orbitals of the nucleic acid, 2) the effect of intercalation was found to be dependent on the redox state of the intercalator: while oxidized anthraquinone decreases, reduced anthraquinone increases the conductance, and 3) the sequence of intercalated nucleic acid further affects the transmission: lowering the AT-region length was found to enhance the electronic coupling of the intercalator with GC bases, hence yielding an increase of more than four times in conductance. We anticipate our study to inspire designing intercalator-nucleic acid complexes for potential use in molecular electronics via creating a multi-level gating effect. 
    more » « less
  4. Abstract

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have roles in cell-to-cell signaling, biofilm formation, and stress responses. Here, the effects of abiotic stressors on OMV contents and composition from biofilm cells of the plant health-promoting bacteriumPseudomonas chlororaphisO6 (PcO6) are examined. Two stressors relevant to this root-colonizing bacterium were examined: CuO nanoparticles (NPs)-a potential fertilizer and fungicide- and H2O2-released from roots during plant stress responses. Atomic force microscopy revealed 40–300 nm diameter OMVs from control and stressed biofilm cells. Raman spectroscopy with linear discriminant analysis (LDA) was used to identify changes in chemical profiles ofPcO6 cells and resultant OMVs according to the cellular stressor with 84.7% and 83.3% accuracies, respectively. All OMVs had higher relative concentrations of proteins, lipids, and nucleic acids thanPcO6 cells. The nucleic acid concentration in OMVs exhibited a cellular stressor-dependent increase: CuO NP-induced OMVs > H2O2-induced OMVs > control OMVs. Biochemical assays confirmed the presence of lipopolysaccharides, nucleic acids, and protein in OMVs; however, these assays did not discriminate OMV composition according to the cellular stressor. These results demonstrate the sensitivity of Raman spectroscopy using LDA to characterize and distinguish cellular stress effects on OMVs composition and contents.

    more » « less
  5. Abstract

    Peptide nucleic acids (PNAs) are nucleic acid analogs with hybridization properties and enzymatic stability superior to that of DNA. In addition to gene targeting applications, PNAs have garnered significant attention as bio‐polymers due to the Watson–Crick‐based molecular recognition and flexibility of synthesis. Here, PNA amphiphiles are engineered using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γ  PNA) amphiphiles self‐assemble into spherical vesicles. Further, nano‐assemblies (NA) are formulated using the amphiphilic γ  PNA as a polymer via ethanol injection‐based protocols. Comprehensive head‐on comparison of the physicochemical and cellular uptake properties of PNA derived self‐ and NA is performed. Small‐angle neutron and X‐ray scattering analysis reveal ellipsoidal morphology of γ  PNA NA that results in superior cellular delivery compate to the spherical self‐assembly. Next, the functional activities of γ  PNA self‐and NA in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis‐based assays are compared. Overall, it is established that γ  PNA amphiphile is a functionally active bio‐polymer to formulate NA for a wide range of biomedical applications.

    more » « less