skip to main content


Title: Astrometric Accelerations as Dynamical Beacons: Discovery and Characterization of HIP 21152 B, the First T-dwarf Companion in the Hyades*
Abstract

Benchmark brown dwarf companions with well-determined ages and model-independent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing high-contrast imaging campaign of stars exhibiting proper-motion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the Hipparcos-Gaia proper motions, yielding a dynamical mass of244+6MJup, which is 1–2σlower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wide-separation (1837″ or 7.9 × 104au) early-L dwarf with an inferred mass near the hydrogen-burning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008) atmospheric models and a suite of retrievals. The best-fit grid-based models havefsed= 2, indicating the presence of clouds,Teff= 1400 K, andlogg=4.5dex. These results are consistent with the object’s spectral type of T0 ± 1. As the first benchmark brown dwarf companion in the Hyades, HIP 21152 B joins the small but growing number of substellar companions with well-determined ages and dynamical masses.

 
more » « less
PAR ID:
10390517
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
2
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 39
Size(s):
Article No. 39
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dynamical masses of giant planets and brown dwarfs are critical tools for empirically validating substellar evolutionary models and their underlying assumptions. We present a measurement of the dynamical mass and an updated orbit of PZ Tel B, a young brown dwarf companion orbiting a late-G member of theβPic moving group. PZ Tel A exhibits an astrometric acceleration between Hipparcos and Gaia EDR3, which enables the direct determination of the companion’s mass. We have also acquired new Keck/NIRC2 adaptive optics imaging of the system, which increases the total baseline of relative astrometry to 15 yr. Our joint orbit fit yields a dynamical mass of279+25MJup, semimajor axis of274+14au, eccentricity of0.520.10+0.08, and inclination of91.730.32+0.36°. The companion’s mass is consistent within 1.1σof predictions from four grids of hot-start evolutionary models. The joint orbit fit also indicates a more modest eccentricity of PZ Tel B than previous results. PZ Tel joins a small number of young (<200 Myr) systems with benchmark substellar companions that have dynamical masses and precise ages from moving group membership.

     
    more » « less
  2. Abstract

    Brown dwarfs with measured dynamical masses and spectra from direct imaging are benchmarks that anchor substellar atmosphere cooling and evolution models. We present Subaru SCExAO/CHARIS infrared spectroscopy of HIP 93398 B, a brown dwarf companion recently discovered by Y. Li et al. (2023), as part of an informed survey using the Hipparcos–Gaia Catalog of Accelerations. This object was previously classified as a T6 dwarf based on its luminosity, with its independently derived age and dynamical mass in tension with existing models of brown dwarf evolution. Spectral typing via empirical standard spectra, temperatures derived by fitting substellar atmosphere models, andJH,JKandHLcolors all suggest that this object has a substantially higher temperature and luminosity, consistent with classification as a late-L dwarf near the L/T transition (T=1200119+140K) with moderate to thick clouds possibly present in its atmosphere. When compared with the latest generation of evolution models that account for clouds with our revised luminosity and temperature for the object, the tension between the model-independent mass/age and model predictions is resolved.

     
    more » « less
  3. Abstract

    We present the direct imaging discovery of a low-mass companion to the nearby accelerating F star, HIP 5319, using SCExAO coupled with the CHARIS, VAMPIRES, and MEC instruments in addition to Keck/NIRC2 imaging. CHARISJHK(1.1–2.4μm) spectroscopic data combined with VAMPIRES 750 nm, MECY, and NIRC2Lpphotometry is best matched by an M3–M7 object with an effective temperature ofT= 3200 K and surface gravity log(g) = 5.5. Using the relative astrometry for HIP 5319 B from CHARIS and NIRC2, and absolute astrometry for the primary from Gaia and Hipparcos, and adopting a log-normal prior assumption for the companion mass, we measure a dynamical mass for HIP 5319 B of3111+35MJ, a semimajor axis of18.64.1+10au, an inclination of69.415+5.6degrees, and an eccentricity of0.420.29+0.39. However, using an alternate prior for our dynamical model yields a much higher mass of12888+127MJ. Using data taken with the LCOGT NRES instrument we also show that the primary HIP 5319 A is a single star in contrast to previous characterizations of the system as a spectroscopic binary. This work underscores the importance of assumed priors in dynamical models for companions detected with imaging and astrometry, and the need to have an updated inventory of system measurements.

     
    more » « less
  4. Abstract

    M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and findMB=88.03.2+3.4MJup, putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star witha=383+4au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detectH218O(3.7σsignificance) in the companion’s atmosphere and measure12CO/13CO=9822+28andH216O/H218O=24080+145after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure12CO/13CO=7916+21andC16O/C18O=28870+125for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO andH218Oabundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types.

     
    more » « less
  5. Abstract

    Accretion rates (Ṁ) of young stars show a strong correlation with object mass (M); however, extension of theṀMrelation into the substellar regime is less certain. Here, we present the Comprehensive Archive of Substellar and Planetary Accretion Rates (CASPAR), the largest compilation to date of substellar accretion diagnostics. CASPAR includes: 658 stars, 130 brown dwarfs, and 10 bound planetary mass companions. In this work, we investigate the contribution of methodological systematics to scatter in theṀMrelation and compare brown dwarfs to stars. In our analysis, we rederive all quantities using self-consistent models, distances, and empirical line flux to accretion luminosity scaling relations to reduce methodological systematics. This treatment decreases the original 1σscatter in thelogṀlogMrelation by ∼17%, suggesting that it makes only a small contribution to the dispersion. The CASPAR rederived values are best fit byṀM2.02±0.06from 10MJto 2M, confirming previous results. However, we argue that the brown-dwarf and stellar populations are better described separately and by accounting for both mass and age. Therefore, we derive separate age-dependentṀMrelations for these regions and find a steepening in the brown-dwarfṀMslope with age. Within this mass regime, the scatter decreases from 1.36 dex to 0.94 dex, a change of ∼44%. This result highlights the significant role that evolution plays in the overall spread of accretion rates, and suggests that brown dwarfs evolve faster than stars, potentially as a result of different accretion mechanisms.

     
    more » « less