skip to main content


Title: Autoregressive graph Volterra models and applications
Abstract

Graph-based learning and estimation are fundamental problems in various applications involving power, social, and brain networks, to name a few. While learning pair-wise interactions in network data is a well-studied problem, discovering higher-order interactions among subsets of nodes is still not yet fully explored. To this end, encompassing and leveraging (non)linear structural equation models as well as vector autoregressions, this paper proposes autoregressive graph Volterra models (AGVMs) that can capture not only the connectivity between nodes but also higher-order interactions presented in the networked data. The proposed overarching model inherits the identifiability and expressibility of the Volterra series. Furthermore, two tailored algorithms based on the proposed AGVM are put forth for topology identification and link prediction in distribution grids and social networks, respectively. Real-data experiments on different real-world collaboration networks highlight the impact of higher-order interactions in our approach, yielding discernible differences relative to existing methods.

 
more » « less
NSF-PAR ID:
10390520
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
EURASIP Journal on Advances in Signal Processing
Volume:
2023
Issue:
1
ISSN:
1687-6180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A key problem in social network analysis is to identify nonhuman interactions. State‐of‐the‐art bot‐detection systems like Botometer train machine‐learning models on user‐specific data. Unfortunately, these methods do not work on data sets in which only topological information is available. In this paper, we propose a new, purely topological approach. Our method removes edges that connect nodes exhibiting strong evidence of non‐human activity from publicly available electronic‐social‐network datasets, including, for example, those in the Stanford Network Analysis Project repository (SNAP). Our methodology is inspired by classic work in evolutionary psychology by Dunbar that posits upper bounds on the total strength of the set of social connections in which a single human can be engaged. We model edge strength with Easley and Kleinberg's topological estimate; label nodes as “violators” if the sum of these edge strengths exceeds a Dunbar‐inspired bound; and then remove the violator‐to‐violator edges. We run our algorithm on multiple social networks and show that our Dunbar‐inspired bound appears to hold for social networks, but not for nonsocial networks. Our cleaning process classifies 0.04% of the nodes of the Twitter‐2010 followers graph as violators, and we find that more than 80% of these violator nodes have Botometer scores of 0.5 or greater. Furthermore, after we remove the roughly 15 million violator‐violator edges from the 1.2‐billion‐edge Twitter‐2010 follower graph, 34% of the violator nodes experience a factor‐of‐two decrease in PageRank. PageRank is a key component of many graph algorithms such as node/edge ranking and graph sparsification. Thus, this artificial inflation would bias algorithmic output, and result in some incorrect decisions based on this output.

     
    more » « less
  2. Learning the human--mobility interaction (HMI) on interactive scenes (e.g., how a vehicle turns at an intersection in response to traffic lights and other oncoming vehicles) can enhance the safety, efficiency, and resilience of smart mobility systems (e.g., autonomous vehicles) and many other ubiquitous computing applications. Towards the ubiquitous and understandable HMI learning, this paper considers both spoken language (e.g., human textual annotations) and unspoken language (e.g., visual and sensor-based behavioral mobility information related to the HMI scenes) in terms of information modalities from the real-world HMI scenarios. We aim to extract the important but possibly implicit HMI concepts (as the named entities) from the textual annotations (provided by human annotators) through a novel human language and sensor data co-learning design.

    To this end, we propose CG-HMI, a novel Cross-modality Graph fusion approach for extracting important Human-Mobility Interaction concepts from co-learning of textual annotations as well as the visual and behavioral sensor data. In order to fuse both unspoken and spoken languages, we have designed a unified representation called the human--mobility interaction graph (HMIG) for each modality related to the HMI scenes, i.e., textual annotations, visual video frames, and behavioral sensor time-series (e.g., from the on-board or smartphone inertial measurement units). The nodes of the HMIG in these modalities correspond to the textual words (tokenized for ease of processing) related to HMI concepts, the detected traffic participant/environment categories, and the vehicle maneuver behavior types determined from the behavioral sensor time-series. To extract the inter- and intra-modality semantic correspondences and interactions in the HMIG, we have designed a novel graph interaction fusion approach with differentiable pooling-based graph attention. The resulting graph embeddings are then processed to identify and retrieve the HMI concepts within the annotations, which can benefit the downstream human-computer interaction and ubiquitous computing applications. We have developed and implemented CG-HMI into a system prototype, and performed extensive studies upon three real-world HMI datasets (two on car driving and the third one on e-scooter riding). We have corroborated the excellent performance (on average 13.11% higher accuracy than the other baselines in terms of precision, recall, and F1 measure) and effectiveness of CG-HMI in recognizing and extracting the important HMI concepts through cross-modality learning. Our CG-HMI studies also provide real-world implications (e.g., road safety and driving behaviors) about the interactions between the drivers and other traffic participants.

     
    more » « less
  3. null (Ed.)
    Networks have been widely used to represent the relations between objects such as academic networks and social networks, and learning embedding for networks has thus garnered plenty of research attention. Self-supervised network representation learning aims at extracting node embedding without external supervision. Recently, maximizing the mutual information between the local node embedding and the global summary (e.g. Deep Graph Infomax, or DGI for short) has shown promising results on many downstream tasks such as node classification. However, there are two major limitations of DGI. Firstly, DGI merely considers the extrinsic supervision signal (i.e., the mutual information between node embedding and global summary) while ignores the intrinsic signal (i.e., the mutual dependence between node embedding and node attributes). Secondly, nodes in a real-world network are usually connected by multiple edges with different relations, while DGI does not fully explore the various relations among nodes. To address the above-mentioned problems, we propose a novel framework, called High-order Deep Multiplex Infomax (HDMI), for learning node embedding on multiplex networks in a self-supervised way. To be more specific, we first design a joint supervision signal containing both extrinsic and intrinsic mutual information by high-order mutual information, and we propose a High- order Deep Infomax (HDI) to optimize the proposed supervision signal. Then we propose an attention based fusion module to combine node embedding from different layers of the multiplex network. Finally, we evaluate the proposed HDMI on various downstream tasks such as unsupervised clustering and supervised classification. The experimental results show that HDMI achieves state-of-the-art performance on these tasks. 
    more » « less
  4. Learning representations of sets of nodes in a graph is crucial for applications ranging from node-role discovery to link prediction and molecule classification. Graph Neural Networks (GNNs) have achieved great success in graph representation learning. However, expressive power of GNNs is limited by the 1-Weisfeiler-Lehman (WL) test and thus GNNs generate identical representations for graph substructures that may in fact be very different. More powerful GNNs, proposed recently by mimicking higher-order-WL tests, only focus on representing entire graphs and they are computationally inefficient as they cannot utilize sparsity of the underlying graph. Here we propose and mathematically analyze a general class of structure related features, termed Distance Encoding (DE). DE assists GNNs in representing any set of nodes, while providing strictly more expressive power than the 1-WL test. DE captures the distance between the node set whose representation is to be learned and each node in the graph. To capture the distance DE can apply various graph-distance measures such as shortest path distance or generalized PageRank scores. We propose two ways for GNNs to use DEs (1) as extra node features, and (2) as controllers of message aggregation in GNNs. Both approaches can utilize the sparse structure of the underlying graph, which leads to computational efficiency and scalability. We also prove that DE can distinguish node sets embedded in almost all regular graphs where traditional GNNs always fail. We evaluate DE on three tasks over six real networks: structural role prediction, link prediction, and triangle prediction. Results show that our models outperform GNNs without DE by up-to 15% in accuracy and AUROC. Furthermore, our models also significantly outperform other state-of-the-art methods especially designed for the above tasks. 
    more » « less
  5. Simplicial neural networks (SNNs) have recently emerged as a new direction in graph learning which expands the idea of convolutional architectures from node space to simplicial complexes on graphs. Instead of predominantly assessing pairwise relations among nodes as in the current practice, simplicial complexes allow us to describe higher-order interactions and multi-node graph structures. By building upon connection between the convolution operation and the new block Hodge-Laplacian, we propose the first SNN for link prediction. Our new Block Simplicial Complex Neural Networks (BScNets) model generalizes existing graph convolutional network (GCN) frameworks by systematically incorporating salient interactions among multiple higher-order graph structures of different dimensions. We discuss theoretical foundations behind BScNets and illustrate its utility for link prediction on eight real-world and synthetic datasets. Our experiments indicate that BScNets outperforms the state-of-the-art models by a significant margin while maintaining low computation costs. Finally, we show utility of BScNets as a new promising alternative for tracking spread of infectious diseases such as COVID-19 and measuring the effectiveness of the healthcare risk mitigation strategies. 
    more » « less