skip to main content


Title: Geomagnetic disturbance associated with increased vagrancy in migratory landbirds
Abstract

Rare birds known as “accidentals” or “vagrants” have long captivated birdwatchers and puzzled biologists, but the drivers of these rare occurrences remain elusive. Errors in orientation or navigation are considered one potential driver: migratory birds use the Earth’s magnetic field—sensed using specialized magnetoreceptor structures—to traverse long distances over often unfamiliar terrain. Disruption to these magnetoreceptors or to the magnetic field itself could potentially cause errors leading to vagrancy. Using data from 2 million captures of 152 landbird species in North America over 60 years, we demonstrate a strong association between disruption to the Earth’s magnetic field and avian vagrancy during fall migration. Furthermore, we find that increased solar activity—a disruptor of the avian magnetoreceptor—generally counteracts this effect, potentially mitigating misorientation by disabling the ability for birds to use the magnetic field to orient. Our results link a hypothesized cause of misorientation to the phenomenon of avian vagrancy, further demonstrating the importance of magnetoreception among the orientation mechanisms of migratory birds. Geomagnetic disturbance may have important downstream ecological consequences, as vagrants may experience increased mortality rates or facilitate range expansions of avian populations and the organisms they disperse.

 
more » « less
Award ID(s):
2033263 1703048
NSF-PAR ID:
10390533
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wild waterbirds, and especially wild waterfowl, are considered to be a reservoir for avian influenza viruses, with transmission likely occurring at the agricultural-wildlife interface. In the past few decades, avian influenza has repeatedly emerged in China along the East Asian-Australasian Flyway (EAAF), where extensive habitat conversion has occurred. Rapid environmental changes in the EAAF, especially distributional changes in rice paddy agriculture, have the potential to affect both the movements of wild migratory birds and the likelihood of spillover at the agricultural-wildlife interface. To begin to understand the potential implications such changes may have on waterfowl and disease transmission risk, we created dynamic Brownian Bridge Movement Models (dBBMM) based on waterfowl telemetry data. We used these dBBMM models to create hypothetical scenarios that would predict likely changes in waterfowl distribution relative to recent changes in rice distribution quantified through remote sensing. Our models examined a range of responses in which increased availability of rice paddies would drive increased use by waterfowl and decreased availability would result in decreased use, predicted from empirical data. Results from our scenarios suggested that in southeast China, relatively small decreases in rice agriculture could lead to dramatic loss of stopover habitat, and in northeast China, increases in rice paddies should provide new areas that can be used by waterfowl. Finally, we explored the implications of how such scenarios of changing waterfowl distribution may affect the potential for avian influenza transmission. Our results provide advance understanding of changing disease transmission threats by incorporating real-world data that predicts differences in habitat utilization by migratory birds over time. 
    more » « less
  2. Abstract

    Rapid advances in the field of movement ecology have led to increasing insight into both the population‐level abundance patterns and individual‐level behaviour of migratory species. Despite this progress, research questions that require scaling individual‐level understanding of the behaviour of migrating organisms to the population level remain difficult to investigate.

    To bridge this gap, we introduce a generalizable framework for training full‐annual cycle individual‐based models of migratory movements by combining information from tracking studies and species occurrence records. Focusing on migratory birds, we call this method: Models of Individual Movement of Avian Species (MIMAS). We implement MIMAS to design individual‐based models of avian migration that are trained using previously published weekly occurrence maps and fit via Approximate Bayesian Computation.

    MIMAS models leverage individual‐ and population‐level information to faithfully represent continental‐scale migration patterns. Models can be trained successfully for species even when little existing individual‐level data is available for parameterization by relying on population‐level information. In contrast to existing mathematical models of migration, MIMAS explicitly represents and estimates behavioural attributes of migrants. MIMAS can additionally be used to simulate movement over consecutive migration seasons, and models can be easily updated or validated as new empirical data on migratory behaviours becomes available.

    MIMAS can be applied to a variety of research questions that require representing individual movement at large scales. We demonstrate three applied uses for MIMAS: estimating population‐specific migratory phenology, predicting the spatial patterns and magnitude of ectoparasite dispersal by migrants, and simulating the spread of a pathogen across the annual cycle of a migrant species. Currently, MIMAS can easily be used to build models for hundreds of migratory landbird species but can also be adapted in the future to build models of other types of migratory animals.

     
    more » « less
  3. Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth’s magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration.

     
    more » « less
  4. Abstract

    Supplementary food resources (e.g., subsidies) associated with agriculture can benefit wildlife species, increasing predictability and availability of food. Avian scavengers including raptors often utilize subsidies associated with both recreational hunting and pest shooting on agricultural lands. However, these subsidies can contain lead (Pb) fragments if they are culled with Pb‐based ammunition, potentially leading to Pb poisoning and physiological impairment in wildlife. Nesting Golden Eagles (Aquila chrysaetos) commonly forage in agricultural lands during the breeding season, and therefore, both adults and their nestlings are susceptible to Pb exposure from scavenging shot wildlife. We assessed drivers of Pb exposure in 258 nestling Golden Eagles (401 total blood samples), along with physiological and growth responses, in agricultural lands across four western states in the United States. We also evaluated the birds’ Pb stable isotope signatures to inform exposure sources. Twenty‐six percent of Golden Eagle nestlings contained Pb concentrations associated with subclinical poisoning for sensitive species (0.03–0.2 μg/g ww), 4% had Pb concentrations that exceeded subclinical poisoning benchmarks (0.2–0.5 μg/g ww), and <1% exceeded either concentrations associated with clinical poisoning (0.5–1.0 μg/g ww) and or those deemed to cause severe clinical poisoning (>1.0 μg/g ww). Lead concentrations were highest in nestlings with close proximity to fields that potentially provided subsidies and declined exponentially as distance to subsidies increased. However, close proximity to agriculture, and presumably subsidies, positively influenced nestling growth rates. Across the range of Pb exposure, nestlings experienced a 67% reduction in delta‐aminolevulinic acid dehydratase (δ‐ALAD) activity, suggesting nestlings may have been anemic or experiencing cellular damage. Isotopic ratios of206Pb/207Pb increased non‐linearly with increasing blood Pb in Golden Eagle nestlings, and 45% of the birds were consistent with those of ammunition. However, above 0.10 μg/g ww, the proportion associated with ammunition increased to 89% of the nestlings. An improved understanding of how these positive (growth) and negative (physiology) effects associated with proximity to subsidies interact would be beneficial to managers when considering management scenarios and potentially evaluating any measures taken to reduce Pb exposure across the landscape.

     
    more » « less
  5. The Arctic Coastal Plain is one of the most important avian breeding grounds in the world; however, many species are in decline. Arctic‐breeding birds contend with short breeding seasons, harsh climatic conditions, and now, rapidly changing, variable, and unpredictable environmental conditions caused by climate change. Additionally, those breeding in industrial areas may be impacted by human activities. It is difficult to separate the impacts of industrial development and climate change; however, long‐term datasets can help show patterns over time. We evaluated factors influencing reproductive parameters of breeding birds at Prudhoe Bay, Alaska, 2003–2019, by monitoring 1265 shorebird nests, 378 passerine nests, and 231 waterfowl nests. We found that nest survival decreased significantly nearer high‐use infrastructure for all guilds. Temporally, passerine nest survival declined across the 17 years of the study, while there was no significant evidence of change in their nest density. Shorebird nest survival did not vary significantly across years, nor did nest density. Waterfowl nest density increased over the course of the study, but we could not estimate nest survival in all years. Egg predator populations varied across time; numbers of gulls and ravens increased in the oilfields 2003–2019, while Arctic fox decreased, and jaeger numbers did not vary significantly. Long‐term datasets are rare in the Arctic, but they are crucial for understanding impacts to breeding birds from both climate change and increasing anthropogenic activities. We show that nest survival was lower for birds nesting closer to high‐use infrastructure in Arctic Alaska, which was not detected in earlier, shorter‐term studies. Additionally, we show that Lapland longspur nest survival decreased across time, in concert with continent‐wide declines in many passerine species. The urgency to understand these relationships cannot be expressed strongly enough, given change is continuing to happen and the potential impacts are large. 
    more » « less