skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ecology and age, but not genetic ancestry, predict fetal loss in a wild baboon hybrid zone
Abstract ObjectivesPregnancy failure represents a major fitness cost for any mammal, particularly those with slow life histories such as primates. Here, we quantified the risk of fetal loss in wild hybrid baboons, including genetic, ecological, and demographic sources of variance. We were particularly interested in testing the hypothesis that hybridization increases fetal loss rates. Such an effect would help explain how baboons may maintain genetic and phenotypic integrity despite interspecific gene flow. Materials and MethodsWe analyzed outcomes for 1020 pregnancies observed over 46 years in a natural yellow baboon‐anubis baboon hybrid zone. Fetal losses and live births were scored based on records of female reproductive state and the appearance of live neonates. We modeled the probability of fetal loss as a function of a female's genetic ancestry (the proportion of her genome estimated to be descended from anubis [vs. yellow] ancestors), age, number of previous fetal losses, dominance rank, group size, climate, and habitat quality using binomial mixed effects models. ResultsFemale genetic ancestry did not predict fetal loss. Instead, the risk of fetal loss is elevated for very young and very old females. Fetal loss is most robustly predicted by ecological factors, including poor habitat quality prior to a home range shift and extreme heat during pregnancy. DiscussionOur results suggest that gene flow between yellow and anubis baboons is not impeded by an increased risk of fetal loss for hybrid females. Instead, ecological conditions and female age are key determinants of this component of female reproductive success.  more » « less
Award ID(s):
2018897
PAR ID:
10390535
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Biological Anthropology
Volume:
180
Issue:
4
ISSN:
2692-7691
Page Range / eLocation ID:
p. 618-632
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Across mammals, fertility and offspring survival are often lowest at the beginning and end of females’ reproductive careers. However, extrinsic drivers of reproductive success—including infanticide by males—could stochastically obscure these expected age-related trends. Here, we modelled reproductive ageing trajectories in two cercopithecine primates that experience high rates of male infanticide: the chacma baboon (Papio ursinus) and the gelada (Theropithecus gelada). We found that middle-aged mothers generally achieved the shortest interbirth intervals in chacma baboons. By contrast, old gelada females often showed shorter interbirth intervals than their younger group-mates with one exception: the oldest females typically failed to produce additional offspring before their deaths. Infant survival peaked in middle-aged mothers in chacma baboons but in young mothers in geladas. While infant mortality linked with maternal death increased as mothers aged in both species, infanticide risk did not predictably shift with maternal age. Thus, infanticide patterns cannot explain the surprising young mother advantage observed in geladas. Instead, we argue that this could be a product of their graminivorous diets, which might remove some energetic constraints on early reproduction. In sum, our data suggest that reproductive ageing is widespread but may be differentially shaped by ecological pressures. 
    more » « less
  2. Male baboons mature more slowly than females, reaching full adult maturity at around 10-12 years of age. After the onset of puberty at 5-7 years, the sub-adult period lasts 3-5 years while the male continues to grow, though there is considerable variation between individuals. Here, we present data on the behavioral changes that accompany the physical maturation of male olive baboons (Papio anubis) as they transition through each developmental stage. This research was conducted on a fully habituated wild troop at the Uaso Ngiro Baboon Project in Laikipia, Kenya. We use long-term grooming data (2018-2023) to show that males have significantly more grooming partners as they get older (n=48, p<.001). We then use behavioral data collected in June and July 2023 to compare the social behaviors of males from three developmental stages: juveniles (n=5), males who recently became sub-adults (n=4), and males who have been sub-adults for over a year (n=5). The differences between these three groups show the effect of puberty on behavior: juveniles were observed in social play significantly more often than sub-adults (p=.006), while males who recently underwent puberty tended to groom less often than either juveniles or older sub-adults (p=.091). Our focal data also revealed variation in the age at which males reached each developmental stage. Further research is needed to determine causes and consequences of the variation in age at puberty and the potential long-term consequences of this variation on the males’ social behavior. 
    more » « less
  3. Among mammals, post-reproductive life spans are currently documented only in humans and a few species of toothed whales. Here we show that a post-reproductive life span exists among wild chimpanzees in the Ngogo community of Kibale National Park, Uganda. Post-reproductive representation was 0.195, indicating that a female who reached adulthood could expect to live about one-fifth of her adult life in a post-reproductive state, around half as long as human hunter-gatherers. Post-reproductive females exhibited hormonal signatures of menopause, including sharply increasing gonadotropins after age 50. We discuss whether post-reproductive life spans in wild chimpanzees occur only rarely, as a short-term response to favorable ecological conditions, or instead are an evolved species-typical trait as well as the implications of these alternatives for our understanding of the evolution of post-reproductive life spans. 
    more » « less
  4. Florkiewicz, Brittany N (Ed.)
    In group-living animals, social and ecological challenges can push groups to fission into two or more ‘daughter’ groups. Here, we describe the demographic and social behavioral changes that were associated with the formation of a new group of olive baboons (Papio anubis) in Laikipia, Kenya. The process began when a high-ranking natal male transferred into a nearby study group, which coincided with the dispersal of several adult females. The dispersing females had close social ties with this male, and he had sired most of their current offspring. After a stint in the neighboring group, these animals eventually budded off to form a new, separate group. Throughout the fission process, female-female grooming was strongly predicted by eventual fission outcomes. In other words, females groomed most with the females they would remain with after the fission. By contrast, female-male grooming was prevalent in co-resident dyads but less strictly predicted by eventual fission outcomes. Although rates of aggression were elevated during periods when females dispersed, females who moved between groups were not targeted for eviction. Intergroup grooming remained elevated throughout the fission process, particularly between mixed-sex dyads, suggesting that group boundaries may have remained somewhat blurred. Taken together, the formation of this new group appears to have been a product of social factors including elevated levels of female-female aggression and females’ affinity for particular males. 
    more » « less
  5. Abstract Among human and nonhuman primates, mutual eye gaze (MEG) and gaze following are believed to be important for social cognition and communicative signaling. The goals of this study were to examine how early rearing experiences contribute to individual variation in MEG and to examine the potential role of genetic factors underlying this variation. Subjects included 93 female and 23 male baboons (Papio anubis) ranging from 3 to 20 years of age. Within the sample, there were 55 mother‐reared (MR) and 61 nursery‐reared (NR) baboons. MEG was assessed in four 60‐s test sessions. For each session, the duration, frequency, and bout length were recorded. Mean values were then calculated for each individual from the four sessions. A multivariate analysis of covariance revealed an overall significant main effect for rearing. Subsequent univariate analyses revealed significant rearing effects on mean bout length, but not mean duration or mean frequency, with MR baboons having longer bout lengths compared to NR baboons. Furthermore, mean bout length was found to be significantly heritable. These results indicate that rearing experiences, and to a small extent, genetic factors, affect patterns of mutual eye gaze ‐ in particular, bout length. These results differ from previous findings in MR and NR chimpanzees, further suggesting that rearing may impact MEG in a species‐specific manner that reflects the function of gaze in different primate species. 
    more » « less