skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global variation in nonstructural carbohydrate stores in response to climate
Abstract Woody plant species store nonstructural carbohydrates (NSCs) for many functions. While known to buffer against fluctuations in photosynthetic supply, such as at night, NSC stores are also thought to buffer against environmental extremes, such as drought or freezing temperatures by serving as either back‐up energy reserves or osmolytes. However, a clear picture of how NSCs are shaped by climate is still lacking. Here, we update and leverage a unique global database of seasonal NSC storage measurements to examine whether maximum total NSC stores and the amount of soluble sugars are associated with clinal patterns in low temperatures or aridity, indicating they may confer a benefit under freezing or drought conditions. We examine patterns using the average climate at each study site and the unique climatic conditions at the time and place in which the sample was taken. Altogether, our results support the idea that NSC stores act as critical osmolytes. Soluble Sugars increase with both colder and drier conditions in aboveground tissues, indicating they can plastically increase a plants' tolerance of cold or arid conditions. However, maximum total NSCs increased, rather than decreased, with average site temperature and had no relationship to average site aridity. This result suggests that the total amount of NSC a plant stores may be more strongly determined by its capacity to assimilate carbon than by environmental stress. Thus, NSCs are unlikely to serve as reservoir of energy. This study is the most comprehensive synthesis to date of global NSC variation in relation to climate and supports the idea that NSC stores likely serve as buffers against environmental stress. By clarifying their role in cold and drought tolerance, we improve our ability to predict plant response to environment.  more » « less
Award ID(s):
2010781
PAR ID:
10390537
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
7
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1854-1869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Abstract Interactions between water and carbon dynamics underlie drought-related tree mortality. While whole-tree water relations have been shown to play a key role in the response to and recovery from drought, the role of nonstructural carbohydrates (NSC) and how their storage and allocation changes surrounding drought events deserves further attention and is critical for understanding tree survival. Here, we quantified in situ NSC responses of temperate forest trees to the 2016 drought in the northeastern United States. Sugar and starch concentrations were measured in the stemwood of five tree species from 2014 to 2019, which allowed us to monitor NSCs in relation to climatic conditions before, during, and after the natural drought. We found that immediately following the drought, measured stemwood NSC concentrations decreased. However, NSC concentrations rebounded quickly within three years. Notably, trees allocated proportionally more to starch than to sugars following the 2016 drought. In winter 2017, starch comprised 45% of total stemwood stores, whereas starch made up only 1–2% in other years. Further, we modeled and assessed the climatic drivers of total NSC concentrations in the stem. Variation in total NSC concentrations was significantly predicted by the previous year’s temperature, precipitation, and standardized precipitation-evapotranspiration index (SPEI), with stemwood concentrations decreasing following hotter, drier periods and increasing following cooler, wetter periods. Overall, our work provides insight into the climatic drivers of NSC storage and highlights the important role that a tree’s carbon economy may play in its response and recovery to environmental stress. 
    more » « less
  2. Cernusak, Lucas (Ed.)
    Abstract Nonstructural carbohydrates (NSCs) play a critical role in plant physiology and metabolism, yet we know little about their distribution within individual organs such as the stem. This leaves many open questions about whether reserves deep in the stem are metabolically active and available to support functional processes. To gain insight into the availability of reserves, we measured radial patterns of NSCs over the course of a year in the stemwood of temperate trees with contrasting wood anatomy (ring porous vs diffuse porous). In a subset of trees, we estimated the mean age of soluble sugars within and between different organs using the radiocarbon (14C) bomb spike approach. First, we found that NSC concentrations were the highest and most seasonally dynamic in the outermost stemwood segments for both ring-porous and diffuse-porous trees. However, while the seasonal fluctuation of NSCs was dampened in deeper stemwood segments for ring-porous trees, it remained high for diffuse-porous trees. These NSC dynamics align with differences in the proportion of functional sapwood and the arrangement of vessels between ring-porous and diffuse-porous trees. Second, radial patterns of 14C in the stemwood showed that sugars became older when moving toward the pith. The same pattern was found in the coarse roots. Finally, when taken together, our results highlight how the radial distribution and age of NSCs relate to wood anatomy and suggest that while deeper, and likely older, reserves in the stemwood fluctuated across the seasons, the deepest reserves at the center of the stem were not used to support tree metabolism under usual environmental conditions. 
    more » « less
  3. Abstract Trees'totalamount of non‐structural carbohydrate (NSC) stores and theproportionof these stores residing as insoluble starch are vital traits for individuals living in variable environments. However, our understanding of how stores vary in response to environmental stress is poorly understood as the genetic component of storage is rarely accounted for in studies. Here, we quantified variation in NSC traits in branch samples taken from over 600 clonally transplanted black cottonwood (Populus trichocarpa)trees grown in two common gardens. We found heritable variation in both total NSC stores and the proportion of stores in starch (H2TNC = 0.19, H2PropStarch = 0.31), indicating a substantial genetic component of variation. In addition, we found high amounts of plasticity in both traits in response to cold temperatures and significant genotype‐by‐environment (GxE) interactions in the total amount of NSC stored (54% of P is GxE). This finding of high GxE indicates extensive variation across trees in their response to environment, which may explain why previous studies of carbohydrate stores' responses to stress have failed to converge on a consistent pattern. Overall, we found high amounts of environmental and genetic variation in NSC storage concentrations, which may bolster species against future climate change. 
    more » « less
  4. Meinzer, Frederick (Ed.)
    Abstract In trees, large uncertainties remain in how nonstructural carbohydrates (NSCs) respond to variation in water availability in natural, intact ecosystems. Variation in NSC pools reflects temporal fluctuations in supply and demand, as well as physiological coordination across tree organs in ways that differ across species and NSC fractions (e.g., soluble sugars vs starch). Using landscape-scale crown (leaves and twigs) NSC concentration measurements in three foundation tree species (Populus tremuloides, Pinus edulis, Juniperus osteosperma), we evaluated in situ, seasonal variation in NSC responses to moisture stress on three timescales: short-term (via predawn water potential), seasonal (via leaf δ13C) and annual (via current year’s ring width index). Crown NSC responses to moisture stress appeared to depend on hydraulic strategy, where J. osteosperma appears to regulate osmotic potentials (via higher sugar concentrations), P. edulis NSC responses suggest respiratory depletion and P. tremuloides responses were consistent with direct sink limitations. We also show that overly simplistic models can mask seasonal and tissue variation in NSC responses, as well as strong interactions among moisture stress at different timescales. In general, our results suggest large seasonal variation in crown NSC concentrations reflecting the multiple cofunctions of NSCs in plant tissues, including storage, growth and osmotic regulation of hydraulically vulnerable leaves. We emphasize that crown NSC pool size cannot be viewed as a simple physiological metric of stress; in situ NSC dynamics are complex, varying temporally, across species, among NSC fractions and among tissue types. 
    more » « less
  5. Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes. 
    more » « less