skip to main content


Title: Harmonization and standardization of nucleus pulposus cell extraction and culture methods
Abstract Background

In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab‐to‐lab variability jeopardizes the much‐needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources.

Methods

The most commonly applied methods for NP cell extraction, expansion, and re‐differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re‐differentiation media and techniques were also investigated.

Results

Recommended protocols are provided for extraction, expansion, and re‐differentiation of NP cells from common species utilized for NP cell culture.

Conclusions

This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species‐specific pronase usage, 60–100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross‐lab comparisons on NP cells worldwide.

 
more » « less
NSF-PAR ID:
10390623
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
JOR SPINE
Volume:
6
Issue:
1
ISSN:
2572-1143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims

    Endosidins are a group of low-molecular-weight compounds, first identified by ‘chemical biology’ screening assays, that have been used to target specific components of the endomembrane system. In this study, we employed multiple microscopy-based screening techniques to elucidate the effects of endosidin 5 (ES5) on the Golgi apparatus and the secretion of extracellular matrix (ECM) components in Penium margaritaceum. These effects were compared with those caused by treatments with brefeldin A and concanamycin A. Penium margaritaceum’s extensive Golgi apparatus and endomembrane system make it an outstanding model organism for screening changes to the endomembrane system. Here we detail changes to the Golgi apparatus and secretion of ECM material caused by ES5.

    Methods

    Changes to extracellular polymeric substance (EPS) secretion and cell wall expansion were screened using fluorescence microscopy. Confocal laser scanning microscopy and transmission electron microscopy were used to assess changes to the Golgi apparatus, the cell wall and the vesicular network. Electron tomography was also performed to detail the changes to the Golgi apparatus.

    Key Results

    While other endosidins were able to impact EPS secretion and cell wall expansion, only ES5 completely inhibited EPS secretion and cell wall expansion over 24 h. Short treatments of ES5 resulted in displacement of the Golgi bodies from their typical linear alignment. The number of cisternae decreased per Golgi stack and trans face cisternae in-curled to form distinct elongate circular profiles. Longer treatment resulted in a transformation of the Golgi body to an irregular aggregate of cisternae. These alterations could be reversed by removal of ES5 and returning cells to culture.

    Conclusions

    ES5 alters secretion of ECM material in Penium by affecting the Golgi apparatus and does so in a markedly different way from other endomembrane inhibitors such as brefeldin A and concanamycin A.

     
    more » « less
  2. Abstract Background

    Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability.

    Methods

    The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24–48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology toolenrichGOfrom theclusterprofiler.One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combinedP < 0.05 for at least three independent experiments.

    Results

    Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs.

    Conclusions

    This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.

     
    more » « less
  3. Abstract Background

    Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus,indica,temperate japonica, andtropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets.

    Results

    We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variation in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice andArabidopsis.

    Conclusions

    Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.

     
    more » « less
  4. Abstract Objectives

    Telomeres are the protective caps of chromosomes. They shorten with cell replication, age, and possibly environmental stimuli (eg, infection and stress). Short telomere length (TL) predicts subsequent worse health. Although venous whole blood (VWB) is most commonly used for TL measurement, other, more minimally invasive, sampling techniques are becoming increasingly common due to their field‐friendliness, allowing for feasible measurement in low‐resource contexts. We conducted statistical validation work for measuring TL in dried blood spots (DBS) and incorporated our results into a meta‐analysis evaluating minimally invasive sampling techniques to measure TL.

    Methods

    We isolated DNA extracts from DBS using a modified extraction protocol and tested how they endured different shipping conditions and long‐term cryostorage. We then included our in‐house DBS TL validation statistics (correlation values with VWB TL and age) in a series of meta‐analyses of results from 24 other studies that published similar associations for values between TL measured in DBS, saliva, and buccal cells.

    Results

    Our modified DBS extraction technique produced DNA yields that were roughly twice as large as previously recorded. Partially extracted DBS DNA was stable for 7 days at room temperature, and still provided reliable TL measurements, as determined by external validation statistics. In our meta‐analysis, DBS TL had the highest external validity, followed by saliva, and then buccal cells—possibly reflecting similarities/differences in cellular composition vs VWB.

    Conclusions

    DBS DNA is the best proxy for VWB from the three minimally‐invasively specimen types evaluated and can be used to expand TL research to diverse settings and populations.

     
    more » « less
  5. Background

    We performed a systematic review that identified at least 9,000 scientific papers on PubMed that include immunofluorescent images of cells from the central nervous system (CNS). These CNS papers contain tens of thousands of immunofluorescent neural images supporting the findings of over 50,000 associated researchers. While many existing reviews discuss different aspects of immunofluorescent microscopy, such as image acquisition and staining protocols, few papers discuss immunofluorescent imaging from an image-processing perspective. We analyzed the literature to determine the image processing methods that were commonly published alongside the associated CNS cell, microscopy technique, and animal model, and highlight gaps in image processing documentation and reporting in the CNS research field.

    Methods

    We completed a comprehensive search of PubMed publications using Medical Subject Headings (MeSH) terms and other general search terms for CNS cells and common fluorescent microscopy techniques. Publications were found on PubMed using a combination of column description terms and row description terms. We manually tagged the comma-separated values file (CSV) metadata of each publication with the following categories: animal or cell model, quantified features, threshold techniques, segmentation techniques, and image processing software.

    Results

    Of the almost 9,000 immunofluorescent imaging papers identified in our search, only 856 explicitly include image processing information. Moreover, hundreds of the 856 papers are missing thresholding, segmentation, and morphological feature details necessary for explainable, unbiased, and reproducible results. In our assessment of the literature, we visualized current image processing practices, compiled the image processing options from the top twelve software programs, and designed a road map to enhance image processing. We determined that thresholding and segmentation methods were often left out of publications and underreported or underutilized for quantifying CNS cell research.

    Discussion

    Less than 10% of papers with immunofluorescent images include image processing in their methods. A few authors are implementing advanced methods in image analysis to quantify over 40 different CNS cell features, which can provide quantitative insights in CNS cell features that will advance CNS research. However, our review puts forward that image analysis methods will remain limited in rigor and reproducibility without more rigorous and detailed reporting of image processing methods.

    Conclusion

    Image processing is a critical part of CNS research that must be improved to increase scientific insight, explainability, reproducibility, and rigor.

     
    more » « less