skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Small mammal personalities generate context dependence in the seed dispersal mutualism
Mutualisms are foundational components of ecosystems with the capacity to generate biodiversity through adaptation and coevolution and give rise to essential services such as pollination and seed dispersal. To understand how mutualistic interactions shape communities and ecosystems, we must identify the mechanisms that underlie their functioning. One mechanism that may drive mutualisms to vary in space and time is the unique behavioral types, or personalities, of the individuals involved. Here, our goal was to examine interindividual variation in the seed dispersal mutualism and identify the role that different personalities play. In a field experiment, we observed individual deer mice ( Peromyscus maniculatus ) with known personality traits predating and dispersing seeds in a natural environment and classified all observed interactions made by individuals as either positive or negative. We then scored mice on a continuum from antagonistic to mutualistic and found that within a population of scatter hoarders, some individuals are more mutualistic than others and that one factor driving this distinction is animal personality. Through this empirical work, we provide a conceptual advancement to the study of mutualism by integrating it with the study of intraspecific behavioral variation. These findings indicate that animal personality is a previously overlooked mechanism generating context dependence in plant–animal interactions and suggest that behavioral diversity may have important consequences for the functioning of mutualisms.  more » « less
Award ID(s):
1940525
PAR ID:
10390754
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
15
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Small mammals such as mice and voles play a fundamental role in the ecosystem service of seed dispersal by caching seeds in small hoards that germinate under beneficial conditions. Pilferage is a critical step in this process in which animals steal seeds from other individuals' caches. Pilferers often recache stolen seeds, which are often pilfered by new individuals, who may recache again, and so on, potentially leading to compounded increased dispersal distance. However, little research has investigated intraspecific differences in pilfering frequency, despite its importance in better understanding the role of behavioural diversity in the valuable ecosystem service of seed dispersal.We conducted a field experiment in Maine (USA) investigating how intraspecific variation, including personality, influences pilferage effectiveness.Within the context of a long‐term capture‐mark‐recapture study, we measured the unique personality of 3311 individual small mammals of 10 species over a 7‐year period. For this experiment, we created artificial caches using eastern white pine (Pinus strobus) seeds monitored with trail cameras and buried antennas for individual identification.Of the 436 caches created, 83.5% were pilfered by 10 species, including deer mice ((Peromyscus maniculatus) and southern red‐backed voles (Myodes gapperi). We show how individuals differ in their ability to pilfer seeds and that these differences are driven by personality, body condition and sex. More exploratory deer mice and those with lower body condition were more likely to locate a cache, and female southern red‐backed voles were more likely than males to locate caches. Also, caches were more likely to be pilfered in areas of higher small mammal abundance.Because the risk of pilferage drives decisions concerning where an animal chooses to store seeds, pilferage pressure is thought to drive the evolution of food‐hoarding behaviour. Our study shows that pilferage ability varies between individuals, meaning that some individuals have a disproportionately strong influence on others' caching decisions and disproportionately contribute to compounded longer‐distance seed dispersal facilitated by pilferage. Our results add to a growing body of knowledge showing that the unique personalities of individual small mammals play a critical role in forest regeneration by impacting seed dispersal. 
    more » « less
  2. Abstract Small mammals are key scatter hoarders in forest ecosystems, acting as both seed predators and dispersers. The outcome of their interactions (i.e., predation vs. dispersal) is determined by a series of decisions made by small mammals, such as the choice of seed, whether the seed is immediately consumed or cached, and where it is cached. These decisions are influenced by a variety of factors, including the intrinsic traits of the seed, the individual personality of the scatter hoarder, and the perceived risk of predation while foraging. Furthermore, these factors may all interact to dictate the fate of the seed, with consequences for forest regeneration. Nevertheless, the ways in which perceived predation risk and personality interact to affect the seed dispersal decisions of scatter hoarders are still poorly understood. To contribute in filling this knowledge gap, we tested the hypotheses that southern red‐backed voles (Myodes gapperi), an important scatter hoarder in forest ecosystems, would exhibit personality‐mediated foraging and that predation risk would alter associations between personality and seed dispersal. We conducted a large‐scale field experiment, offering seed trays at stations with altered risk levels and recorded foraging decisions of free‐ranging voles with known personalities. We found that personality and perceived predation risk influenced decisions made by foraging voles. Specifically, docility, and boldness predicted foraging site selection, boldness predicted seed species selection and the number of seeds individuals selected, and the tendency to explore of an individual predicted whether voles would remove or consume seeds. Predation risk, mediated by the amount of cover at a site and by moon illumination, affected which foraging site individuals chose, seed species selection, and the probability of removal versus consumption. We did not find support for an interaction between personality and predation risk in predicting foraging decisions. These findings highlight the importance of scatter hoarder personality and perceived predation risk in affecting foraging decisions, with important consequences for seed dispersal and implications for altered patterns of forest regeneration in areas with different small mammal personality distributions or landscapes of fear. 
    more » « less
  3. Abstract Multispecies mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited. In this study, we used a synthetic mutualism formed by genetically modified budding yeast to investigate the effect of dispersal on the persistence and stability of mutualisms under exploitation. We found that dispersal increased the persistence of exploited mutualisms by 80% compared to the isolated systems. Furthermore, our results showed that dispersal increased local diversity, decreased beta diversity among local communities, and stabilized community structure at the regional scale. Our results indicate that dispersal can allow mutualisms to persist in meta-communities by reintroducing species that are locally competitively excluded by exploiters. With limited dispersal, e.g. due to increased fragmentation of meta-communities, mutualisms might be more prone to breakdown. Taken together, our results highlight the critical role of dispersal in facilitating the persistence of mutualism. 
    more » « less
  4. Abstract Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have important consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed‐dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen‐based defensive compounds common in fruits of the neotropical plant genusPiper(Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts toPiperfruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of ants redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants. 
    more » « less
  5. Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have complex consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed-dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen-based defensive compounds common in fruits of the neotropical plant genus Piper (Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts to Piper fruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants. 
    more » « less