skip to main content


Title: Asymmetric Topography Causes Normal Stress Perturbations at the Rupture Front: The Case of the Cajon Pass
Abstract

We use 3D dynamic rupture simulations to discover a previously un‐described effect of asymmetric topography on the earthquake process. With the Cajon Pass along the San Andreas Fault as an example, we find that asymmetric topography generates an alternating normal stress perturbation around the rupture front, near the free surface. When topography lies to the right of the propagating right‐lateral front, the normal stress perturbation is clamping ahead of the rupture front and unclamping behind. When topography alternates to the left, the perturbation reverses sign. The process is analogous to the normal stress variations on dip‐slip faults. While this effect does not strongly affect rupture propagation and slip in our current parametrization, it requires explanation and exploration. An understanding of the normal stress perturbation due to asymmetric topography will help prevent its misattribution to other sources and lead to a better understanding of the interplay of multiple processes during earthquakes.

 
more » « less
NSF-PAR ID:
10390853
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To better understand how normal stress heterogeneity affects earthquake rupture, we conducted laboratory experiments on a 760 mm poly (methyl‐mathacrylate) PMMA sample with a 25 mm “bump” of locally higher normal stress (∆σbt). We systematically varied the sample‐average normal stress () and bump prominence (). For bumps with lower prominence () the rupture simply propagated through the bump and produced regular sequences of periodic stick‐slip events. Bumps with higher prominence () produced complex rupture sequences with variable timing and ruptures sizes, and this complexity persisted for multiple stick‐slip supercycles. During some events, the bump remained locked and acted as a barrier that completely stopped rupture. In other events, a dynamic rupture front terminated at the locked bump, but rupture reinitiated on the other side of the bump after a brief pause of 0.3–1 ms. Only when stress on the bump was near critical did the bump slip and unload built up strain energy in one large event. Thus, a sufficiently prominent bump acted as a barrier (energy sink) when it was far from critically stressed and as an asperity (energy source) when it was near critically stressed. Similar to an earthquake gate, the bump never acted as a permanent barrier. In the experiments, we resolve the above rupture interactions with a bump as separate rupture phases; however, when observed through the lens of seismology, it may appear as one continuous rupture that speeds up and slows down. The complicated rupture‐bump interactions also produced enhanced high frequency seismic waves recorded with piezoelectric sensors.

     
    more » « less
  2. Large, destructive earthquakes often propagate along thrust faults including megathrusts. The asymmetric interaction of thrust earthquake ruptures with the free surface leads to sudden variations in fault-normal stress, which affect fault friction. Here, we present full-field experimental measurements of displacements, particle velocities, and stresses that characterize the rupture interaction with the free surface, including the large normal stress reductions. We take advantage of these measurements to investigate the dependence of dynamic friction on transient changes in normal stress, demonstrate that the shear frictional resistance exhibits a significant lag in response to such normal stress variations, and identify a predictive frictional formulation that captures this effect. Properly accounting for this delay is important for simulations of fault slip, ground motion, and associated tsunami excitation.

     
    more » « less
  3. Abstract

    Mature faults with large cumulative slip often separate rocks with dissimilar elastic properties and show asymmetric damage distribution. Elastic contrast across such bimaterial faults can significantly modify various aspects of earthquake rupture dynamics, including normal stress variations, rupture propagation direction, distribution of ground motions, and evolution of off‐fault damage. Thus, analyzing elastic contrasts of bimaterial faults is important for understanding earthquake physics and related hazard potential. The effect of elastic contrast between isotropic materials on rupture dynamics is relatively well studied. However, most fault rocks are elastically anisotropic, and little is known about how the anisotropy affects rupture dynamics. We examine microstructures of the Sandhill Corner shear zone, which separates quartzofeldspathic rock and micaceous schist with wider and narrower damage zones, respectively. This shear zone is part of the Norumbega fault system, a Paleozoic, large‐displacement, seismogenic, strike‐slip fault system exhumed from middle crustal depths. We calculate elastic properties and seismic wave speeds of elastically anisotropic rocks from each unit having different proportions of mica grains aligned sub‐parallel to the fault. Our findings show that the horizontally polarized shear wave propagating parallel to the bimaterial fault (with fault‐normal particle motion) is the slowest owing to the fault‐normal compliance and therefore may be important in determining the elastic contrast that affects rupture dynamics in anisotropic media. Following results from subshear rupture propagation models in isotropic media, our results are consistent with ruptures preferentially propagated in the slip direction of the schist, which has the slower horizontal shear wave and larger fault‐normal compliance.

     
    more » « less
  4. Abstract

    There is a strong need to model potential rupture behaviors for the next Cascadia megathrust earthquake. However, there exists significant uncertainty regarding the extent of downdip rupture and rupture speed. To address this problem, we study how the transition region (i.e., the gap), which separates the locked from slow‐slip regions, influences coseismic rupture propagation using 2‐D dynamic rupture simulations governed by a slip‐weakening friction law. We show that rupture propagation through the gap is strongly controlled by the amount of accumulated tectonic initial shear stress and gap friction level. A large amplitude negative dynamic stress drop is needed to arrest downdip rupture. We also observe downdip supershear rupture when the gradient in effective normal stress from the locked to slow‐slip regions is dramatic. Our results justify kinematic rupture models that extend below the gap and suggests the possibility of high‐frequency energy radiation during the next Cascadia megathrust earthquake.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Large earthquakes on strike-slip faults often rupture multiple fault segments by jumping over stepovers. Previous studies, based on field observations or numerical modeling with a homogeneous initial stress field, have suggested that stepovers more than ∼5  km wide would stop the propagation of rupture, but many exceptions have been observed in recent years. Here, we integrate a dynamic rupture model with a long-term fault stress model to explore the effects of background stress perturbation on rupture propagation across stepovers along strike-slip faults. Our long-term fault models simulate steady-state stress perturbation around stepovers. Considering such stress perturbation in dynamic rupture models leads to prediction of larger distance a dynamic rupture can jump over stepovers: over 15 km for a releasing stepover or 7 km for a restraining stepover, comparing with the 5 km limit in models with the same fault geometry and frictional property but assuming a homogeneous initial stress. The effect of steady-state stress perturbations is stronger in an overlapping stepover than in an underlapping stepover. The maximum jumping distance can reach 20 km in an overlapping releasing stepover with low-static frictional coefficients. These results are useful for estimating the maximum length of potential fault ruptures and assessing seismic hazard. 
    more » « less