skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Poor relationships between NEON Airborne Observation Platform data and field-based vegetation traits at a mesic grassland
Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high-resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground-measured LAI (r = 0.32) and AOP Total Biomass and ground-measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least-squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP-derived data products should not be used without extensive ground-based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field-based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in-situ field measurements across a diversity of sites.  more » « less
Award ID(s):
1926108
PAR ID:
10390935
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Elizabeth Borer
Date Published:
Journal Name:
Ecology
Volume:
103
Issue:
2
ISSN:
0361-2600
Page Range / eLocation ID:
e03590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high‐resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground‐measured LAI (r = 0.32) and AOP Total Biomass and ground‐measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least‐squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP‐derived data products should not be used without extensive ground‐based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field‐based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in‐situ field measurements across a diversity of sites.

     
    more » « less
  2. null (Ed.)
    Abstract. Canopy radiative transfer is the primary mechanism by which models relate vegetation composition and state to the surface energy balance, which is important to light- and temperature-sensitive plant processes as well as understanding land–atmosphere feedbacks.In addition, certain parameters (e.g., specific leaf area, SLA) that have an outsized influence on vegetation model behavior can be constrained by observations of shortwave reflectance, thus reducing model predictive uncertainty.Importantly, calibrating against radiative transfer outputs allows models to directly use remote sensing reflectance products without relying on highly derived products (such as MODIS leaf area index) whose assumptions may be incompatible with the target vegetation model and whose uncertainties are usually not well quantified.Here, we created the EDR model by coupling the two-stream representation of canopy radiative transfer in the Ecosystem Demography model version 2 (ED2) with a leaf radiative transfer model (PROSPECT-5) and a simple soil reflectance model to predict full-range, high-spectral-resolution surface reflectance that is dependent on the underlying ED2 model state.We then calibrated this model against estimates of hemispherical reflectance (corrected for directional effects) from the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and survey data from 54 temperate forest plots in the northeastern United States.The calibration significantly reduced uncertainty in model parameters related to leaf biochemistry and morphology and canopy structure for five plant functional types.Using a single common set of parameters across all sites, the calibrated model was able to accurately reproduce surface reflectance for sites with highly varied forest composition and structure.However, the calibrated model's predictions of leaf area index (LAI) were less robust, capturing only 46 % of the variability in the observations.Comparing the ED2 radiative transfer model with another two-stream soil–leaf–canopy radiative transfer model commonly used in remote sensing studies (PRO4SAIL) illustrated structural errors in the ED2 representation of direct radiation backscatter that resulted in systematic underestimation of reflectance.In addition, we also highlight that, to directly compare with a two-stream radiative transfer model like EDR, we had to perform an additional processing step to convert the directional reflectance estimates of AVIRIS to hemispherical reflectance (also known as “albedo”).In future work, we recommend that vegetation models add the capability to predict directional reflectance, to allow them to more directly assimilate a wide range of airborne and satellite reflectance products.We ultimately conclude that despite these challenges, using dynamic vegetation models to predict surface reflectance is a promising avenue for model calibration and validation using remote sensing data. 
    more » « less
  3. This dataset includes field measurements of above-ground biomass made between May and October, 2023 in three locations within the Yukon River Watershed: Huslia, Alaska(AK) (65.700 N, 156.387W), Beaver, AK (66.362 N, 147.398W), and Alakanuk, AK (62.685N, 164.644W). We measured a total of 11,335 trees, distributed in 190 field plots (approximately 10 meter (m) x 10 m). We apply allometric scaling relations to convert measurements of tree diameter to kilograms of dry biomass. We then link these filed measurements of above-ground biomass density to the mean forest canopy height (MCH), derived from airborne Light Detection and Ranging (LiDAR) data. We derive empirical regressions linking MCH to above-ground biomass in each of the field sites, and then apply these empirical relationships to the LiDAR datasets to obtain maps of above-ground biomass density. This dataset includes both the field observations (coordinates, tree type, and tree diameter of the 11,335 inventoried trees) and the processed above-ground biomass maps (georeferenced TIFF files, with a spatial resolution of 10 m). 
    more » « less
  4. The National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) provides long-term, quantitative information on land use, vegetation structure and canopy chemistry over the NEON sites. AOP flies a suite of integrated remote sensing instruments consisting of a hyperspectral imager, a waveform lidar, and a color digital camera. Small-footprint full-waveform airborne lidar provides an enhanced capability beyond discrete return lidar for capturing and characterizing canopy structure. Due to high data rates/volumes, a common practice is to truncate waveforms. Very little research exists to determine how much data should be saved. In this study, simulations are run in Rochester Institute of Technology’s DIRSIG software. The resulting output waveforms are analyzed to assess three lidar system requirements: the total number of bins with a detected signal, the number of segments, and the max number of bins in a single segment. Recommendations for the values of these requirements are provided. 
    more » « less
  5. Abstract

    In recent years, the availability of airborne imaging spectroscopy (hyperspectral) data has expanded dramatically. The high spatial and spectral resolution of these data uniquely enable spatially explicit ecological studies including species mapping, assessment of drought mortality and foliar trait distributions. However, we have barely begun to unlock the potential of these data to use direct mapping of vegetation characteristics to infer subsurface properties of the critical zone. To assess their utility for Earth systems research, imaging spectroscopy data acquisitions require integration with large, coincident ground‐based datasets collected by experts in ecology and environmental and Earth science. Without coordinated, well‐planned field campaigns, potential knowledge leveraged from advanced airborne data collections could be lost. Despite the growing importance of this field, documented methods to couple such a wide variety of disciplines remain sparse.

    We coordinated the first National Ecological Observatory Network Airborne Observation Platform (AOP) survey performed outside of their core sites, which took place in the Upper East River watershed, Colorado. Extensive planning for sample tracking and organization allowed field and flight teams to update the ground‐based sampling strategy daily. This enabled collection of an extensive set of physical samples to support a wide range of ecological, microbiological, biogeochemical and hydrological studies.

    We present a framework for integrating airborne and field campaigns to obtain high‐quality data for foliar trait prediction and document an archive of coincident physical samples collected to support a systems approach to ecological research in the critical zone. This detailed methodological account provides an example of how a multi‐disciplinary and multi‐institutional team can coordinate to maximize knowledge gained from an airborne survey, an approach that could be extended to other studies.

    The coordination of imaging spectroscopy surveys with appropriately timed and extensive field surveys, along with high‐quality processing of these data, presents a unique opportunity to reveal new insights into the structure and dynamics of the critical zone. To our knowledge, this level of co‐aligned sampling has never been undertaken in tandem with AOP surveys and subsequent studies utilizing this archive will shed considerable light on the breadth of applications for which imaging spectroscopy data can be leveraged.

     
    more » « less