skip to main content

Title: Tidal capture of stars by supermassive black holes: implications for periodic nuclear transients and quasi-periodic eruptions

Stars that plunge into the centre of a galaxy are tidally perturbed by a supermassive black hole (SMBH), with closer encounters resulting in larger perturbations. Exciting these tides comes at the expense of the star’s orbital energy, which leads to the naive conclusion that a smaller pericentre (i.e. a closer encounter between the star and SMBH) always yields a more tightly bound star to the SMBH. However, once the pericentre distance is small enough that the star is partially disrupted, morphological asymmetries in the mass lost by the star can yield an increase in the orbital energy of the surviving core, resulting in its ejection – not capture – by the SMBH. Using smoothed particle hydrodynamics simulations, we show that the combination of these two effects – tidal excitation and asymmetric mass-loss – results in a maximum amount of energy lost through tides of $\sim 2.5{{\ \rm per\ cent}}$ of the binding energy of the star, which is significantly smaller than the theoretical maximum of the total stellar binding energy. This result implies that stars that are repeatedly partially disrupted by SMBHs many (≳10) times on short-period orbits (≲few years), as has been invoked to explain the periodic nuclear transient ASASSN-14ko and quasi-periodic eruptions, must be bound to the SMBH through a mechanism other than tidal capture, such as a dynamical exchange (i.e. Hills capture).

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Medium: X Size: p. L38-L41
p. L38-L41
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stars grazing supermassive black holes (SMBHs) on bound orbits may survive tidal disruption, causing periodic flares. Inspired by the recent discovery of the periodic nuclear transient ASASSN-14ko, a promising candidate for a repeating tidal disruption event (TDE), we study the tidal deformation of stars approaching SMBHs on eccentric orbits. With both analytical and hydrodynamic methods, we show the overall tidal deformation of a star is similar to that in a parabolic orbit provided that the eccentricity is above a critical value. This allows one to make use of existing simulation libraries from parabolic encounters to calculate the mass fallback rate in eccentric TDEs. We find the flare structures of eccentric TDEs show a complicated dependence on both the SMBH mass and the orbital period. For stars orbiting SMBHs with relatively short periods, we predict significantly shorter-lived duration flares than those in parabolic TDEs, which can be used to predict repeating events if the mass of the SMBH can be independently measured. Using an adiabatic mass-loss model, we study the flare evolution over multiple passages, and show the evolved stars can survive many more passages than main-sequence stars. We apply this theoretical framework to the repeating TDE candidate ASASSN-14ko and suggest that its recurrent flares originate from a moderately massive ( M ≳ 1 M ⊙ ), extended (likely ≈10 R ⊙ ), evolved star on a grazing, bound orbit around the SMBH. Future hydrodynamic simulations of multiple tidal interactions will enable realistic models on the individual flare structure and the evolution over multiple flares. 
    more » « less
  2. Abstract

    A star that approaches a supermassive black hole (SMBH) on a circular extreme mass ratio inspiral (EMRI) can undergo Roche lobe overflow (RLOF), resulting in a phase of long-lived mass transfer onto the SMBH. If the interval separating consecutive EMRIs is less than the mass-transfer timescale driven by gravitational wave emission (typically ∼1–10 Myr), the semimajor axes of the two stars will approach each another on scales of ≲ hundreds to thousands of gravitational radii. Close flybys tidally strip gas from one or both RLOFing stars, briefly enhancing the mass-transfer rate onto the SMBH and giving rise to a flare of transient X-ray emission. If both stars reside in a common orbital plane, these close interactions will repeat on a timescale as short as hours, generating a periodic series of flares with properties (amplitudes, timescales, sources lifetimes) remarkably similar to the “quasi-periodic eruptions” (QPEs) recently observed from galactic nuclei hosting low-mass SMBHs. A cessation of QPE activity is predicted on a timescale of months to years, due to nodal precession of the EMRI orbits out of alignment by the SMBH spin. Channels for generating the requisite coplanar EMRIs include the tidal separation of binaries (Hills mechanism) or Type I inward migration through a gaseous AGN disk. Alternative stellar dynamical scenarios for QPEs, that invoke single stellar EMRIs on an eccentric orbit undergoing a runaway sequence of RLOF events, are strongly disfavored by formation rate constraints.

    more » « less
  3. null (Ed.)
    ABSTRACT The hyper-velocity star S5-HVS1, ejected 5 Myr ago from the Galactic Centre at 1800 km s−1, was most likely produced by tidal break-up of a tight binary by the supermassive black hole SgrA*. Taking a Monte Carlo approach, we show that the former companion of S5-HVS1 was likely a main-sequence star between 1.2 and 6 M⊙ and was captured into a highly eccentric orbit with pericentre distance in the range of 1–10 au and semimajor axis about 103 au. We then explore the fate of the captured star. We find that the heat deposited by tidally excited stellar oscillation modes leads to runaway disruption if the pericentre distance is smaller than about $3\rm \, au$. Over the past 5 Myr, its angular momentum has been significantly modified by orbital relaxation, which may stochastically drive the pericentre inwards below $3\rm \, au$ and cause tidal disruption. We find an overall survival probability in the range 5 per cent to 50 per cent, depending on the local relaxation time in the close environment of the captured star, and the initial pericentre at capture. The pericentre distance of the surviving star has migrated to 10–100 au, making it potentially the most extreme member of the S-star cluster. From the ejection rate of S5-HVS1-like stars, we estimate that there may currently be a few stars in such highly eccentric orbits. They should be detectable (typically $K_{\rm s}\lesssim 18.5\,$ mag) by the GRAVITY instrument and by future Extremely Large Telescopes and hence provide an extraordinary probe of the spin of SgrA*. 
    more » « less
  4. Abstract Recent analyses have shown that close encounters between stars and stellar black holes occur frequently in dense star clusters. Depending upon the distance at closest approach, these interactions can lead to dissipating encounters such as tidal captures and disruptions, or direct physical collisions, all of which may be accompanied by bright electromagnetic transients. In this study, we perform a wide range of hydrodynamic simulations of close encounters between black holes and main-sequence stars that collectively cover the parameter space of interest, and we identify and classify the various possible outcomes. In the case of nearly head-on collisions, the star is completely disrupted with roughly half of the stellar material becoming bound to the black hole. For more distant encounters near the classical tidal-disruption radius, the star is only partially disrupted on the first pericenter passage. Depending upon the interaction details, the partially disrupted stellar remnant may be tidally captured by the black hole or become unbound (in some cases, receiving a sufficiently large impulsive kick from asymmetric mass loss to be ejected from its host cluster). In the former case, the star will undergo additional pericenter passages before ultimately being disrupted fully. Based on the properties of the material bound to the black hole at the end of our simulations (in particular, the total bound mass and angular momentum), we comment upon the expected accretion process and associated electromagnetic signatures that are likely to result. 
    more » « less
  5. Abstract

    Stars that interact with supermassive black holes (SMBHs) can be either completely or partially destroyed by tides. In a partial tidal disruption event (TDE), the high-density core of the star remains intact, and the low-density outer envelope of the star is stripped and feeds a luminous accretion episode. The TDE AT 2018fyk, with an inferred black hole mass of 107.7±0.4M, experienced an extreme dimming event at X-ray (factor of >6000) and UV (factor of ∼15) wavelengths ∼500–600 days after discovery. Here we report on the reemergence of these emission components roughly 1200 days after discovery. We find that the source properties are similar to those of the predimming accretion state, suggesting that the accretion flow was rejuvenated to a similar state. We propose that a repeated partial TDE, where the partially disrupted star is on an ∼1200 day orbit about the SMBH and periodically stripped of mass during each pericenter passage, powers its unique light curve. This scenario provides a plausible explanation for AT 2018fyk’s overall properties, including the rapid dimming event and the rebrightening at late times. We also provide testable predictions for the behavior of the accretion flow in the future; if the second encounter was also a partial disruption, then we predict another strong dimming event around day 1800 (2023 August) and a subsequent rebrightening around day 2400 (2025 March). This source provides strong evidence of the partial disruption of a star by an SMBH.

    more » « less