null
(Ed.)
In a human-centered intelligent manufacturing system, every element is to assist the operator in achieving the optimal operational performance. The primary task of developing such a human-centered system is to accurately understand human behavior. In this paper, we propose a fog computing framework for assembly operation recognition, which brings computing power to the data source, to achieve real-time recognition. The operator’s activity is captured using visual cameras. Instead of directly training a deep learning model from scratch, transfer learning is applied to transfer the learning abilities to our application. A worker assembly operation dataset is established, which at present contains 10 sequential operations in an assembly task of installing a desktop CNC machine. The developed model is evaluated on this dataset and achieves a recognition accuracy of 95% in the testing experiments.
more »
« less
An official website of the United States government
