skip to main content


Title: Cosmic-CoNN: A Cosmic-Ray Detection Deep-learning Framework, Data Set, and Toolkit
Abstract

Rejecting cosmic rays (CRs) is essential for the scientific interpretation of CCD-captured data, but detecting CRs in single-exposure images has remained challenging. Conventional CR detectors require experimental parameter tuning for different instruments, and recent deep-learning methods only produce instrument-specific models that suffer from performance loss on telescopes not included in the training data. We present Cosmic-CoNN, a generic CR detector deployed for 24 telescopes at the Las Cumbres Observatory, which has been made possible by the three contributions in this work: (1) We build a large and diverse ground-based CR data set leveraging thousands of images from a global telescope network. (2) We propose a novel loss function and a neural network optimized for telescope imaging data to train generic CR-detection models. At 95% recall, our model achieves a precision of 93.70% on Las Cumbres imaging data and maintains a consistent performance on new ground-based instruments never used for training. Specifically, the Cosmic-CoNN model trained on the Las Cumbres CR data set maintains high precisions of 92.03% and 96.69% on Gemini GMOS-N/S 1 × 1 and 2 × 2 binning images, respectively. (3) We build a suite of tools including an interactive CR mask visualization and editing interface, console commands, and Python APIs to make automatic, robust CR detection widely accessible by the community of astronomers. Our data set, open-source code base, and trained models are available athttps://github.com/cy-xu/cosmic-conn.

 
more » « less
NSF-PAR ID:
10391098
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
942
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 73
Size(s):
["Article No. 73"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We verified for photometric stability a set of DA white dwarfs with Hubble Space Telescope magnitudes from the near-ultraviolet to the near-infrared and ground-based spectroscopy by using time-spaced observations from the Las Cumbres Observatory network of telescopes. The initial list of 38 stars was whittled to 32 final ones, which comprise a high-quality set of spectrophotometric standards. These stars are homogeneously distributed around the sky and are all fainter thanr∼ 16.5 mag. Their distribution is such that at least two of them would be available to be observed from any observatory on the ground at any time at airmass less than 2. Light curves and different variability indices from the Las Cumbres Observatory data were used to determine the stability of the candidate standards. When available, Pan-STARRS1, Zwicky Transient Facility, and TESS data were also used to confirm the star classification. Our analysis showed that four DA white dwarfs may exhibit evidence of photometric variability, while a fifth is cooler than our established lower temperature limit, and a sixth star might be a binary. In some instances, due to the presence of faint nearby red sources, care should be used when observing a few of the spectrophotometric standards with ground-based telescopes. Light curves and finding charts for all the stars are provided.

     
    more » « less
  2. Context. Fast radio bursts (FRBs) are extremely energetic pulses of millisecond duration and unknown origin. To understand the phenomenon that emits these pulses, targeted and un-targeted searches have been performed for multiwavelength counterparts, including the optical. Aims. The objective of this work is to search for optical transients at the positions of eight well-localized (< 1″) FRBs after the arrival of the burst on different timescales (typically at one day, several months, and one year after FRB detection). We then compare this with known optical light curves to constrain progenitor models. Methods. We used the Las Cumbres Observatory Global Telescope (LCOGT) network to promptly take images with its network of 23 telescopes working around the world. We used a template subtraction technique to analyze all the images collected at differing epochs. We have divided the difference images into two groups: In one group we use the image of the last epoch as a template, and in the other group we use the image of the first epoch as a template. We then searched for optical transients at the localizations of the FRBs in the template subtracted images. Results. We have found no optical transients and have therefore set limiting magnitudes to the optical counterparts. Typical limits in apparent and absolute magnitudes for our LCOGT data are ∼22 and −19 mag in the r band, respectively. We have compared our limiting magnitudes with light curves of super-luminous supernovae (SLSNe), Type Ia supernovae (SNe Ia), supernovae associated with gamma-ray bursts (GRB-SNe), a kilonova, and tidal disruption events (TDEs). Conclusions. Assuming that the FRB emission coincides with the time of explosion of these transients, we rule out associations with SLSNe (at the ∼99.9% confidence level) and the brightest subtypes of SNe Ia, GRB-SNe, and TDEs (at a similar confidence level). However, we cannot exclude scenarios where FRBs are directly associated with the faintest of these subtypes or with kilonovae. 
    more » « less
  3. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$, $M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($\gtrsim 1\,$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$, $M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factors ∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant. 
    more » « less
  4. null (Ed.)
    ABSTRACT We study the impact of cosmic rays (CRs) on the structure of virial shocks, using a large suite of high-resolution cosmological FIRE-2 simulations accounting for CR injection by supernovae. In Milky Way-mass, low-redshift (z ≲ 1−2) haloes, which are expected to form ‘hot haloes’ with slowly cooling gas in quasi-hydrostatic equilibrium (with a stable virial shock), our simulations without CRs do exhibit clear virial shocks. The cooler phase condensing out from inflows becomes pressure confined to overdense clumps, embedded in low-density, volume-filling hot gas with volume-weighted cooling time longer than inflow time. The gas thus transitions sharply from cool free-falling inflow, to hot and thermal-pressure supported at approximately the virial radius (≈Rvir), and the shock is quasi-spherical. With CRs, we previously argued that haloes in this particular mass and redshift range build up CR-pressure-dominated gaseous haloes. Here, we show that when CR pressure dominates over thermal pressure, there is no significant virial shock. Instead, inflowing gas is gradually decelerated by the CR pressure gradient and the gas is relatively subsonic out to and even beyond Rvir. Rapid cooling also maintains subvirial temperatures in the inflowing gas within ∼Rvir. 
    more » « less
  5. Abstract

    The coarse-grained propagation of galactic cosmic rays (CRs) is traditionally constrained by phenomenological models of Milky Way CR propagation fit to a variety of direct and indirect observables; however, constraining the fine-grained transport of CRs along individual magnetic field lines—for instance, diffusive vs streaming transport models—is an unsolved challenge. Leveraging a recent training set of magnetohydrodynamic turbulent box simulations, with CRs spanning a range of transport parameters, we use convolutional neural networks (CNNs) trained solely on gas density maps to classify CR transport regimes. We find that even relatively simple CNNs can quite effectively classify density slices to corresponding CR transport parameters, distinguishing between streaming and diffusive transport, as well as magnitude of diffusivity, with class accuracies between 92% and 99%. As we show, the transport-dependent imprints that CRs leave on the gas are not all tied to the resulting density power spectra: classification accuracies are still high even when image spectra are flattened (85%–98% accuracy), highlighting CR transport-dependent changes to turbulent phase information. We interpret our results with saliency maps and image modifications, and we discuss physical insights and future applications.

     
    more » « less