skip to main content


Title: Diffraction enhanced imaging utilizing a laser produced x-ray source
Image formation by Fresnel diffraction utilizes both absorption and phase-contrast to measure electron density profiles. The low spatial and spectral coherence requirements allow the technique to be performed with a laser-produced x-ray source coupled with a narrow slit. This makes it an excellent candidate for probing interfaces between materials at extreme conditions, which can only be generated at large-scale laser or pulsed power facilities. Here, we present the results from a proof-of-principle experiment demonstrating an effective ∼2 μm laser-generated source at the OMEGA Laser Facility. This was achieved using slits of 1 × 30  μm 2 and 2 × 40  μm 2 geometry, which were milled into 30 μm thick Ta plates. Combining these slits with a vanadium He-like 5.2 keV source created a 1D imaging system capable of micrometer-scale resolution. The principal obstacles to achieving an effective 1 μm source are the slit tilt and taper—where the use of a tapered slit is necessary to increase the alignment tolerance. We demonstrate an effective source size by imaging a 2 ± 0.2 μm radius tungsten wire.  more » « less
Award ID(s):
2045718
NSF-PAR ID:
10391153
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
9
ISSN:
0034-6748
Page Range / eLocation ID:
093502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The splenic interendothelial slits fulfill the essential function of continuously filtering red blood cells (RBCs) from the bloodstream to eliminate abnormal and aged cells. To date, the process by which 8μm RBCs pass through 0.3μm-wide slits remains enigmatic. Does the slit caliber increase during RBC passage as sometimes suggested? Here, we elucidated the mechanisms that govern the RBC retention or passage dynamics in slits by combining multiscale modeling, live imaging, and microfluidic experiments on an original device with submicron-wide physiologically calibrated slits. We observed that healthy RBCs pass through 0.28μm-wide rigid slits at 37 °C. To achieve this feat, they must meet two requirements. Geometrically, their surface area-to-volume ratio must be compatible with a shape in two tether-connected equal spheres. Mechanically, the cells with a low surface area-to-volume ratio (28% of RBCs in a 0.4μm-wide slit) must locally unfold their spectrin cytoskeleton inside the slit. In contrast, activation of the mechanosensitive PIEZO1 channel is not required. The RBC transit time through the slits follows a1 and3 power law with in-slit pressure drop and slip width, respectively. This law is similar to that of a Newtonian fluid in a two-dimensional Poiseuille flow, showing that the dynamics of RBCs is controlled by their cytoplasmic viscosity. Altogether, our results show that filtration through submicron-wide slits is possible without further slit opening. Furthermore, our approach addresses the critical need for in vitro evaluation of splenic clearance of diseased or engineered RBCs for transfusion and drug delivery.

     
    more » « less
  2. An x-ray Fresnel diffractive radiography platform was designed for use at the National Ignition Facility. It will enable measurements of micron-scale changes in the density gradients across an interface between isochorically heated warm dense matter materials, the evolution of which is driven primarily through thermal conductivity and mutual diffusion. We use 4.75 keV Ti K-shell x-ray emission to heat a 1000 μm diameter plastic cylinder, with a central 30 μm diameter channel filled with liquid D2, up to 8 eV. This leads to a cylindrical implosion of the liquid D2 column, compressing it to ∼2.3 g/cm3. After pressure equilibration, the location of the D2/plastic interface remains steady for several nanoseconds, which enables us to track density gradient changes across the material interface with high precision. For radiography, we use Cu He-α x rays at 8.3 keV. Using a slit aperture of only 1 μm width increases the spatial coherence of the source, giving rise to significant diffraction features in the radiography signal, in addition to the refraction enhancement, which further increases its sensitivity to density scale length changes at the D2/plastic interface.

     
    more » « less
  3. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  4. Kirigami metamaterials dramatically change their shape through a coordinated motion of nearly rigid panels and flexible slits. Here, we study a model system for mechanism-based planar kirigami featuring periodic patterns of quadrilateral panels and rhombi slits, with the goal of predicting their engineering scale response to a broad range of loads. We develop a generalized continuum model based on the kirigami’s effective (cell-averaged) nonlinear deformation, along with its slit actuation and gradients thereof. The model accounts for three sources of elasticity: a strong preference for the effective fields to match those of a local mechanism, inter-panel stresses arising from gradients in slit actuation, and distributed hinge bending. We provide a finite-element formulation of this model and implement it using the commercial software Abaqus. Simulations of the model agree quantitatively with experiments across designs and loading conditions. 
    more » « less
  5. Optical projection tomography (OPT) is a powerful imaging modality for attaining high resolution absorption and fluorescence imaging in tissue samples and embryos with a diameter of roughly 1 mm. Moving past this 1 mm limit, scattered light becomes the dominant fraction detected, adding significant “blur” to OPT. Time-domain OPT has been used to select out early-arriving photons that have taken a more direct route through the tissue to reduce detection of scattered photons in these larger samples, which are the cause of image domain blur1. In addition, it was recently demonstrated by our group that detection of scattered photons could be further depressed by running in a “deadtime” regime where laser repetition rates are selected such that the deadtime incurred by early-arriving photons acts as a shutter to later-arriving scattered photons2. By running in this deadtime regime, far greater early photon count rates are achievable than with standard early photon OPT. In this work, another advantage of this enhanced early photon collection approach is demonstrated: specifically, a significant improvement in signal-to-noise ratio. In single photon counting detectors, the main source of noise is “afterpulsing,” which is essentially leftover charge from a detected photon that spuriously results in a second photon count. When the arrival of the photons are time-stamped by the time correlated single photon counting (TCSPC) module , the rate constant governing afterpusling is slow compared to the time-scale of the light pulse detected so it is observed as a background signal with very little time-correlation. This signal is present in all time-gates and so adds noise to the detection of early photons. However, since the afterpusling signal is proportional to the total rate of photon detection, our enhanced early photon approach is uniquely able to have increased early photon counts with no appreciable increase in the afterpulsing since overall count-rate does not change. This is because as the rate of early photon detection goes up, the rate of late-photon detection reduces commensurately, yielding no net change in the overall rate of photons detected. This hypothesis was tested on a 4 mm diameter tissue-mimicking phantom (μa = 0.02 mm-1, μs’ = 1 mm-1) by ranging the power of a 10 MHz pulse 780-nm laser with pulse spread of < 100 fs (Calmar, USA) and an avalanche photodiode (MPD, Picoquant, Germany) and TCSPC module (HydraHarp, Picoquant, Germany) for light detection. Details of the results are in Fig. 1a, but of note is that we observed more than a 60-times improvement in SNR compared to conventional early photon detection that would have taken 1000-times longer to achieve the same early photon count. A demonstration of the type of resolution possible is in Fig 1b with an image of a 4-mm-thick human breast cancer biopsy where tumor spiculations of less than 100 μm diameter are observable. 1Fieramonti, L. et al. PloS one (2012). 2Sinha, L., et al. Optics letters (2016). 
    more » « less