In recent years, multistatic specular meteor radars (SMRs) have been introduced to study the Mesosphere and Lower Thermosphere (MLT) dynamics with increasing spatial and temporal resolution. SMRs, compared to other ground-based observations, have the advantage of continuously measuring the region between 80 and 100 km independent of weather, season, or time of day. In this paper, frequency spectra of MLT horizontal winds are explored through observations from a campaign using the SIMONe (Spread-spectrum Interferometric Multistatic meteor radar Observing Network) approach conducted in northern Germany in 2018 (hereafter SIMONe 2018). The 7-day SIMONe 2018 comprised of fourteen multistatic SMR links and allows us to build a substantial database of specular meteor trail events, collecting more than one hundred thousand detections per day within a geographic area of
- Award ID(s):
- 1933005
- PAR ID:
- 10391199
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 7199 to 7219
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 500 km$$\sim$$ 500 km. We have implemented two methods to obtain the frequency spectra of the horizontal wind components: (1) Mean Wind Estimation (MWE) and (2) Wind field Correlation Function Inversion (WCFI), which utilizes the mean and the covariances of the line of sight velocities, respectively. Monte Carlo simulations of a gravity wave spectral model were implemented to validate and compare both methods. The simulation analyses suggest that the WCFI helps us to capture the energy of smaller scale wind fluctuations than those capture with MWE. Characterization of the spectral slope of the horizontal wind at different MLT altitudes has been conducted on the SIMONe 2018, and it provides evidence that gravity waves with periods smaller than 7 h and greater than 2 h dominate with horizontal structures significantly larger than 500 km. In the future, these analyses can be extended to understand the significance of small-scale fluctuations in the MLT, which were not possible with conventional MWE methods.$$\times$$ Graphical Abstract -
Abstract The mesosphere and lower thermosphere (MLT) region is dominated globally by dynamics at various scales: planetary waves, tides, gravity waves, and stratified turbulence. The latter two can coexist and be significant at horizontal scales less than 500 km, scales that are difficult to measure. This study presents a recently deployed multistatic specular meteor radar system, SIMONe Peru, which can be used to observe these scales. The radars are positioned at and around the Jicamarca Radio Observatory, which is located at the magnetic equator. Besides presenting preliminary results of typically reported large‐scale features, like the dominant diurnal tide at low latitudes, we show results on selected days of spatially and temporally resolved winds obtained with two methods based on: (a) estimation of mean wind and their gradients (gradient method), and (b) an inverse theory with Tikhonov regularization (regularized wind field inversion method). The gradient method allows improved MLT vertical velocities and, for the first time, low‐latitude wind field parameters such as horizontal divergence and relative vorticity. The regularized wind field inversion method allows the estimation of spatial structure within the observed area and has the potential to outperform the gradient method, in particular when more detections are available or when fine adaptive tuning of the regularization factor is done. SIMONe Peru adds important information at low latitudes to currently scarce MLT continuous observing capabilities. Results contribute to studies of the MLT dynamics at different scales inherently connected to lower atmospheric forcing and E‐region dynamo related ionospheric variability.
-
There are few observational techniques for measuring the distribution of kinetic energy within the mesosphere with a wide range of spatial and temporal scales. This study describes a method for estimating the three‐dimensional mesospheric wind field correlation function from specular meteor trail echoes. Each radar echo provides a measurement of a one‐dimensional projection of the wind velocity vector at a randomly sampled point in space and time. The method relies on using pairs of such measurements to estimate the correlation function of the wind with different spatial and temporal lags. The method is demonstrated using a multistatic meteor radar data set that includes ≈105meteor echoes observed during a 24‐hr time period. The new method is found to be in good agreement with the well‐established technique for estimating horizontal mean winds. High‐resolution correlation functions with temporal, horizontal, and vertical lags are also estimated from the data. The temporal correlation function is used to retrieve the kinetic energy spectrum, which includes the semidiurnal mode and a 3‐hr period wave. The horizontal and vertical correlation functions of the wind are then used to derive second‐order structure functions, which are found to be compatible with the Kolmogorov prediction for spectral distribution of kinetic energy in the turbulent inertial range. The presented method can be used to extend the capabilities of specular meteor radars. It is relatively flexible and has a multitude of applications beyond what has been shown in this study.
-
Abstract On 15 January 2022, the Hunga volcano produced a massive explosion that generated perturbations in the entire atmosphere. Nonetheless, signatures in the mesosphere and lower thermosphere (MLT) have been challenging to identify. We report MLT horizontal wind perturbations using three multistatic specular meteor radars on the west side of South America (spanning more than 3,000 km). The most notorious signal is an exceptional solitary wave with a large vertical wavelength observed around 18 UT at all three sites, with an amplitude of ∼50 m/s mainly in the westward direction. Using a customized analysis, the wave is characterized as traveling at ∼200 m/s, with a period of ∼2 hr and a horizontal wavelength of ∼1,440 km in the longitudinal direction, away from the source. The perturbation is consistent with an
L 1Lamb wave mode. The signal's timing coincides with the arrival time of the tsunami triggered by the eruption. -
Abstract. The Hunga Tonga–Hunga Ha′apai volcano eruption was a unique event that caused many atmospheric phenomena around the globe. In this study, we investigate the atmospheric gravity waves in the mesosphere/lower-thermosphere (MLT) launched by the volcanic explosion in the Pacific, leveraging multistatic meteor radar observations from the Chilean Observation Network De Meteor Radars (CONDOR) and the Nordic Meteor Radar Cluster in Fennoscandia. MLT winds are computed using a recently developed 3DVAR+DIV algorithm. We found eastward- and westward-traveling gravity waves in the CONDOR zonal and meridional wind measurements, which arrived 12 and 48 h after the eruption, and we found one in the Nordic Meteor Radar Cluster that arrived 27.5 h after the volcanic detonation. We obtained observed phase speeds for the eastward great circle path at both locations of about 250 m s−1, and they were 170–150 m s−1 for the opposite propagation direction. The intrinsic phase speed was estimated to be 200–212 m s−1. Furthermore, we identified a potential lamb wave signature in the MLT winds using 5 min resolved 3DVAR+DIV retrievals.more » « less