Luminous red galaxies (LRGs) and blue star-forming emission-line galaxies (ELGs) are key tracers of large-scale structure used by cosmological surveys. Theoretical predictions for such data are often done via simplistic models for the galaxy–halo connection. In this work, we use the large, high-fidelity hydrodynamical simulation of the MillenniumTNG project (MTNG) to inform a new phenomenological approach for obtaining an accurate and flexible galaxy-halo model on small scales. Our aim is to study LRGs and ELGs at two distinct epochs, z = 1 and z = 0, and recover their clustering down to very small scales, $r \sim 0.1 \ h^{-1}\, {\rm Mpc}$, i.e. the one-halo regime, while a companion paper extends this to a two-halo model for larger distances. The occupation statistics of ELGs in MTNG inform us that (1) the satellite occupations exhibit a slightly super-Poisson distribution, contrary to commonly made assumptions, and (2) that haloes containing at least one ELG satellite are twice as likely to host a central ELG. We propose simple recipes for modelling these effects, each of which calls for the addition of a single free parameter to simpler halo occupation models. To construct a reliable satellite population model, we explore the LRG and ELG satellite radial and velocity distributions and compare them with those of subhaloes and particles in the simulation. We find that ELGs are anisotropically distributed within haloes, which together with our occupation results provides strong evidence for cooperative galaxy formation (manifesting itself as one-halo galaxy conformity); i.e. galaxies with similar properties form in close proximity to each other. Our refined galaxy-halo model represents a useful improvement of commonly used analysis tools and thus can be of help to increase the constraining power of large-scale structure surveys.
We present the measurements of the small-scale clustering for the emission-line galaxy (ELG) sample from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) in the Sloan Digital Sky Survey IV (SDSS-IV). We use conditional abundance matching method to interpret the clustering measurements from 0.34 to $70\, h^{-1}\, \textrm {Mpc}$. In order to account for the correlation between properties of ELGs and their environment, we add a secondary connection between star formation rate of ELGs and halo accretion rate. Three parameters are introduced to model the ELG [O ii] luminosity and to mimic the target selection of eBOSS ELGs. The parameters in our models are optimized using Markov Chain Monte Carlo (MCMC) method. We find that by conditionally matching star formation rate of galaxies and the halo accretion rate, we are able to reproduce the eBOSS ELG small-scale clustering within 1σ error level. Our best-fitting model shows that the eBOSS ELG sample only consists of $\sim 12{{\ \rm per\ cent}}$ of all star-forming galaxies, and the satellite fraction of eBOSS ELG sample is 19.3 per cent. We show that the effect of assembly bias is $\sim 20{{\ \rm per\ cent}}$ on the two-point correlation function and $\sim 5{{\ \rm per\ cent}}$ on the void probability function at scale of $r\sim 20 \, h^{-1}\, \rm Mpc$.
more » « less- PAR ID:
- 10391241
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 519
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 4253-4262
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Approximate methods to populate dark-matter haloes with galaxies are of great utility to galaxy surveys. However, the limitations of simple halo occupation models (HODs) preclude a full use of small-scale galaxy clustering data and call for more sophisticated models. We study two galaxy populations, luminous red galaxies (LRGs) and star-forming emission-line galaxies (ELGs), at two epochs, z = 1 and z = 0, in the large-volume, high-resolution hydrodynamical simulation of the MillenniumTNG project. In a partner study we concentrated on the small-scale, one-halo regime down to r ∼ 0.1 h−1 Mpc, while here we focus on modelling galaxy assembly bias in the two-halo regime, r ≳ 1 h−1 Mpc. Interestingly, the ELG signal exhibits scale dependence out to relatively large scales (r ∼ 20 h−1 Mpc), implying that the linear bias approximation for this tracer is invalid on these scales, contrary to common assumptions. The 10–15 per cent discrepancy is only reconciled when we augment our halo occupation model with a dependence on extrinsic halo properties (‘shear’ being the best-performing one) rather than intrinsic ones (e.g. concentration, peak mass). We argue that this fact constitutes evidence for two-halo galaxy conformity. Including tertiary assembly bias (i.e. a property beyond mass and ‘shear’) is not an essential requirement for reconciling the galaxy assembly bias signal of LRGs, but the combination of external and internal properties is beneficial for recovering ELG the clustering. We find that centrals in low-mass haloes dominate the assembly bias signal of both populations. Finally, we explore the predictions of our model for higher order statistics such as nearest neighbour counts. The latter supplies additional information about galaxy assembly bias and can be used to break degeneracies between halo model parameters.
-
ABSTRACT The combination of galaxy–galaxy lensing (GGL) and galaxy clustering is a powerful probe of low-redshift matter clustering, especially if it is extended to the non-linear regime. To this end, we use an N-body and halo occupation distribution (HOD) emulator method to model the redMaGiC sample of colour-selected passive galaxies in the Dark Energy Survey (DES), adding parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scale-independent multiplicative lensing bias Alens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile ΔΣ(rp) and the projected galaxy correlation function wp, gg(rp) in the final (Year 6) DES data set over scales $r_p=0.3\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$. For a $3{{\ \rm per\ cent}}$ prior on Alens we forecast precisions of $1.9{{\ \rm per\ cent}}$, $2.0{{\ \rm per\ cent}}$, and $1.9{{\ \rm per\ cent}}$ on Ωm, σ8, and $S_8 \equiv \sigma _8\Omega _m^{0.5}$, marginalized over all halo occupation distribution (HOD) parameters as well as Alens. Adding scales $r_p=0.3\!-\!3.0\, h^{-1} \, \mathrm{Mpc}$ improves the S8 precision by a factor of ∼1.6 relative to a large scale ($3.0\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$) analysis, equivalent to increasing the survey area by a factor of ∼2.6. Sharpening the Alens prior to $1{{\ \rm per\ cent}}$ further improves the S8 precision to $1.1{{\ \rm per\ cent}}$, and it amplifies the gain from including non-linear scales. Our emulator achieves per cent-level accuracy similar to the projected DES statistical uncertainties, demonstrating the feasibility of a fully non-linear analysis. Obtaining precise parameter constraints from multiple galaxy types and from measurements that span linear and non-linear clustering offers many opportunities for internal cross-checks, which can diagnose systematics and demonstrate the robustness of cosmological results.
-
ABSTRACT We employ the hydrodynamical simulation illustrisTNG to inform the galaxy–halo connection of the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples of the Dark Energy Spectroscopic Instrument (DESI) survey at redshift z ∼ 0.8. Specifically, we model the galaxy colours of illustrisTNG and apply sliding DESI colour–magnitude cuts, matching the DESI target densities. We study the halo occupation distribution (HOD) model of the selected samples by matching them to their corresponding dark matter haloes in the illustrisTNG dark matter run. We find the HOD of both the LRG and ELG samples to be consistent with their respective baseline models, but also we find important deviations from common assumptions about the satellite distribution, velocity bias, and galaxy secondary biases. We identify strong evidence for concentration-based and environment-based occupational variance in both samples, an effect known as ‘galaxy assembly bias’. The central and satellite galaxies have distinct dependencies on secondary halo properties, showing that centrals and satellites have distinct evolutionary trajectories and should be modelled separately. These results serve to inform the necessary complexities in modelling galaxy–halo connection for DESI analyses and also prepare for building high-fidelity mock galaxies. Finally, we present a shuffling-based clustering analysis that reveals a 10–15 ${{\ \rm per\ cent}}$ excess in the LRG clustering of modest statistical significance due to secondary galaxy biases. We also find a similar excess signature for the ELGs, but with much lower statistical significance. When a larger hydrodynamical simulation volume becomes available, we expect our analysis pipeline to pinpoint the exact sources of such excess clustering signatures.
-
ABSTRACT We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Survey Year 3 (DES Y3), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS). Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ∼ 0.2–1.0, luminous red galaxies from eBOSS at z ∼ 0.8, and also an SDSS-III BOSS CMASS sample at z ∼ 0.5. We measure two-point IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales 6 Mpc h−1 < rp < 70 Mpc h−1, we make a detection of IAs in each sample, at 5σ–22σ (assuming a simple one-parameter model for IAs). Using these red samples, we measure the IA–luminosity relation. Our results are statistically consistent with previous results, but offer a significant improvement in constraining power, particularly at low luminosity. With this improved precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed in future. We also compare the various signal components at the best-fitting point in parameter space for each sample, and find that magnification and lensing contribute $\sim 2\!-\!18~{{\ \rm per\ cent}}$ of the total signal. As precision continues to improve, it will certainly be necessary to account for these effects in future direct IA measurements. Finally, we make equivalent measurements on a sample of emission-line galaxies from eBOSS at z ∼ 0.8. We constrain the non-linear alignment amplitude to be $A_1=0.07^{+0.32}_{-0.42}$ (|A1| < 0.78 at 95 per cent CL).