Cell aggregates are widely used to study heterotypic cellular interactions during the development of vascularization in vitro. In this study, we examined heterotypic cellular spheroids made of adipose-derived stem cells and CD34+/CD31− endothelial progenitor cells induced by the transfection of miR-148b mimic for de novo induction of osteogenic differentiation and miR-210 mimic for de novo induction of endotheliogenesis, respectively. The effect of the microRNA (miRs) mimic treatment group and induction time on codifferentiation was assessed in spheroids formed of transfected cells over the course of a 4-week culture. Based on gene and protein markers of osteogenic and endotheliogenic differentiation, as well as mineralization assays, our results showed that miRs directed cell differentiation and that progenitor maturity influenced the development of heterotypic cellular regions in aggregates. Overall, the success of coculture to create a prevascularized bone model is dependent on a number of factors, particularly the induction time of differentiation before combining the multiple cell types in aggregates. The approach that has been proposed could be valuable in creating vascularized bone tissue by employing spheroids as the building blocks of more complex issues through the use of cutting-edge methods such as 3D bioprinting. 
                        more » 
                        « less   
                    
                            
                            miRNA induced 3D bioprinted-heterotypic osteochondral interface
                        
                    
    
            Abstract The engineering of osteochondral interfaces remains a challenge. MicroRNAs (miRs) have emerged as significant tools to regulate the differentiation and proliferation of osteogenic and chondrogenic formation in the human musculoskeletal system. Here, we describe a novel approach to osteochondral reconstruction based on the three-dimensional (3D) bioprinting of miR-transfected adipose-derived stem cell (ADSC) spheroids to produce a heterotypic interface that addresses the intrinsic limitations of the traditional approach to inducing zonal differentiation via the use of diffusible cytokines. We evaluated the delivery of miR-148b for osteogenic differentiation and the codelivery of miR-140 and miR-21 for the chondrogenic differentiation of ADSC spheroids. Our results demonstrated that miR-transfected ADSC spheroids exhibited upregulated expression of osteogenic and chondrogenic differentiation related gene and protein markers, and enhanced mineralization and cell proliferation compared to spheroids differentiated using a commercially-available differentiation medium. Upon confirmation of the osteogenic and chondrogenic potential of miR-transfected ADSC spheroids, using aspiration-assisted bioprinting, these spheroids were 3D bioprinted into a dual-layer heterotypic osteochondral interface with a stratified arrangement of distinct osteogenic and chondrogenic zones. The proposed approach holds great promise for the biofabrication of stratified tissues, not only for the osteochondral interfaces presented in this work, but also for other composite tissues and tissue interfaces, such as, but not limited to, the bone-tendon-muscle interface and craniofacial tissues. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10391486
- Date Published:
- Journal Name:
- Biofabrication
- Volume:
- 14
- Issue:
- 4
- ISSN:
- 1758-5082
- Page Range / eLocation ID:
- 044104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil “aspiration-assisted bioprinting (AAB),” which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.more » « less
- 
            Functional repair of osteochondral (OC) tissue remains challenging because the transition from bone to cartilage presents gradients in biochemical and physical properties necessary for joint function. Osteochondral regeneration requires strategies that restore the spatial composition and organization found in the native tissue. Several biomaterial approaches have been developed to guide chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). These strategies can be combined with 3D printing, which has emerged as a useful tool to produce tunable, continuous scaffolds functionalized with bioactive cues. However, functionalization often includes one or more post-fabrication processing steps, which can lead to unwanted side effects and often produce biomaterials with homogeneously distributed chemistries. To address these challenges, surface functionalization can be achieved in a single step by solvent-cast 3D printing peptide-functionalized polymers. Peptide-poly(caprolactone) (PCL) conjugates were synthesized bearing hyaluronic acid (HA)-binding (HAbind–PCL) or mineralizing (E3–PCL) peptides, which have been shown to promote hMSC chondrogenesis or osteogenesis, respectively. This 3D printing strategy enables unprecedented control of surface peptide presentation and spatial organization within a continuous construct. Scaffolds presenting both cartilage-promoting and bone-promoting peptides had a synergistic effect that enhanced hMSC chondrogenic and osteogenic differentiation in the absence of differentiation factors compared to scaffolds without peptides or only one peptide. Furthermore, multi-peptide organization significantly influenced hMSC response. Scaffolds presenting HAbind and E3 peptides in discrete opposing zones promoted hMSC osteogenic behavior. In contrast, presenting both peptides homogeneously throughout the scaffolds drove hMSC differentiation towards a mixed population of articular and hypertrophic chondrocytes. These significant results indicated that hMSC behavior was driven by dual-peptide presentation and organization. The downstream potential of this platform is the ability to fabricate biomaterials with spatially controlled biochemical cues to guide functional tissue regeneration without the need for differentiation factors.more » « less
- 
            Abstract Aspiration-assisted freeform bioprinting (AAfB) has emerged as a promising technique for precise placement of tissue spheroids in three-dimensional (3D) space enabling tissue fabrication. To achieve success in embedded bioprinting using AAfB, an ideal support bath should possess shear-thinning behavior and yield-stress to facilitate tight fusion and assembly of bioprinted spheroids forming tissues. Several studies have demonstrated support baths for embedded bioprinting in the past few years, yet a majority of these materials poses challenges due to their low biocompatibility, opaqueness, complex and prolonged preparation procedures, and limited spheroid fusion efficacy. In this study, to circumvent the aforementioned limitations, we present the feasibility of AAfB of human mesenchymal stem cell (hMSC) spheroids in alginate microgels as a support bath. Alginate microgels were first prepared with different particle sizes modulated by blending time and concentration, followed by determination of the optimal bioprinting conditions by the assessment of rheological properties, bioprintability, and spheroid fusion efficiency. The bioprinted and consequently self-assembled tissue structures made of hMSC spheroids were osteogenically induced for bone tissue formation. Alongside, we investigated the effects of peripheral blood monocyte-derived osteoclast incorporation into the hMSC spheroids in heterotypic bone tissue formation. We demonstrated that alginate microgels enabled unprecedented positional accuracy (∼5%), transparency for visualization, and improved fusion efficiency (∼97%) of bioprinted hMSC spheroids for bone fabrication. This study demonstrates the potential of using alginate microgels as a support bath for many different applications including but not limited to freeform bioprinting of spheroids, cell-laden hydrogels, and fugitive inks to form viable tissue constructs.more » « less
- 
            Abstract Human mesenchymal stem cells (hMSCs) have great potential in cell-based therapies for tissue engineering and regenerative medicine due to their self-renewal and multipotent properties. Recent studies indicate that Notch1-Dll4 signaling is an important pathway in regulating osteogenic differentiation of hMSCs. However, the fundamental mechanisms that govern osteogenic differentiation are poorly understood due to a lack of effective tools to detect gene expression at single cell level. Here, we established a double-stranded locked nucleic acid (LNA)/DNA (LNA/DNA) nanobiosensor for gene expression analysis in single hMSC in both 2D and 3D microenvironments. We first characterized this LNA/DNA nanobiosensor and demonstrated the Dll4 mRNA expression dynamics in hMSCs during osteogenic differentiation. By incorporating this nanobiosensor with live hMSCs imaging during osteogenic induction, we performed dynamic tracking of hMSCs differentiation and Dll4 mRNA gene expression profiles of individual hMSC during osteogenic induction. Our results showed the dynamic expression profile of Dll4 during osteogenesis, indicating the heterogeneity of hMSCs during this dynamic process. We further investigated the role of Notch1-Dll4 signaling in regulating hMSCs during osteogenic differentiation. Pharmacological perturbation is applied to disrupt Notch1-Dll4 signaling to investigate the molecular mechanisms that govern osteogenic differentiation. In addition, the effects of Notch1-Dll4 signaling on hMSCs spheroids differentiation were also investigated. Our results provide convincing evidence supporting that Notch1-Dll4 signaling is involved in regulating hMSCs osteogenic differentiation. Specifically, Notch1-Dll4 signaling is active during osteogenic differentiation. Our results also showed that Dll4 is a molecular signature of differentiated hMSCs during osteogenic induction. Notch inhibition mediated osteogenic differentiation with reduced Alkaline Phosphatase (ALP) activity. Lastly, we elucidated the role of Notch1-Dll4 signaling during osteogenic differentiation in a 3D spheroid model. Our results showed that Notch1-Dll4 signaling is required and activated during osteogenic differentiation in hMSCs spheroids. Inhibition of Notch1-Dll4 signaling mediated osteogenic differentiation and enhanced hMSCs proliferation, with increased spheroid sizes. Taken together, the capability of LNA/DNA nanobiosensor to probe gene expression dynamics during osteogenesis, combined with the engineered 2D/3D microenvironment, enables us to study in detail the role of Notch1-Dll4 signaling in regulating osteogenesis in 2D and 3D microenvironment. These findings will provide new insights to improve cell-based therapies and organ repair techniques.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    