skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions
Coasts and coastlines in many parts of the world are highly dynamic in nature, where large changes in the shoreline position can occur due to natural and anthropogenic influences. The prediction of future shoreline positions is of great importance in the better planning and management of coastal areas. With an aim to assess the different methods of prediction, this study investigates the performance of future shoreline position predictions by quantifying how prediction performance varies depending on the time depths of input historical shoreline data and the time horizons of predicted shorelines. Multi-temporal Landsat imagery, from 1988 to 2021, was used to quantify the rates of shoreline movement for different time period. Predictions using the simple extrapolation of the end point rate (EPR), linear regression rate (LRR), weighted linear regression rate (WLR), and the Kalman filter method were used to predict future shoreline positions. Root mean square error (RMSE) was used to assess prediction accuracies. For time depth, our results revealed that the higher the number of shorelines used in calculating and predicting shoreline change rates the better predictive performance was yielded. For the time horizon, prediction accuracies were substantially higher for the immediate future years (138 m/year) compared to the more distant future (152 m/year). Our results also demonstrated that the forecast performance varied temporally and spatially by time period and region. Though the study area is located in coastal Bangladesh, this study has the potential for forecasting applications to other deltas and vulnerable shorelines globally.  more » « less
Award ID(s):
1660447
PAR ID:
10391500
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Remote Sensing
Volume:
14
Issue:
24
ISSN:
2072-4292
Page Range / eLocation ID:
6364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal erosion is one of the most significant environmental threats to coastal communities globally. In Bangladesh, coastal erosion is a regularly occurring and major destructive process, impacting both human and ecological systems at sea level. The Lower Meghna estuary, located in southern Bangladesh, is among the most vulnerable landscapes in the world to the impacts of coastal erosion. Erosion causes population displacement, loss of productive land area, loss of infrastructure and communication systems, and, most importantly, household livelihoods. With an aim to assess the impacts of historical and predicted shoreline change on different land use and land cover, this study estimated historical shoreline movement, predicted shoreline positions based on historical data, and quantified and assessed past land use and land cover change. Multi-temporal Landsat images from 1988–2021 were used to quantify historical shoreline movement and past land use and land cover. A time-series classification of historical land use and land cover (LULC) were produced to both quantify LULC change and to evaluate the utility of the future shoreline predictions for calculating amounts of lost or newly added land resources by LULC type. Our results suggest that the agricultural land is the most dominant land cover/use (76.04% of the total land loss) lost over the studied period. Our results concluded that the best performed model for predicting land loss was the 10-year time depth and 20-year time horizon model. The 10-year time depth and 20-year time horizon model was also most accurate for agricultural, forested, and inland waterbody land use/covers loss prediction. We strongly believe that our results will build a foundation for future research studying the dynamics of coastal and deltaic environments. 
    more » « less
  2. null (Ed.)
    Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. 
    more » « less
  3. The Louisiana shoreline is rapidly retreating as a result of factors such as sea-level rise and land subsidence. The northern Gulf of Mexico coast is also a hotspot for hurricane landfalls, and several major storms have impacted this region in the past few decades. A section of the Louisiana (USA) coast that has one of the highest rates of shoreline retreat in North America is the Caminada-Moreau headland, located south of New Orleans. Bay Champagne is a coastal lake within the headland that provides a unique opportunity to investigate shoreline retreat and the coastal effects of hurricanes. In order to examine the influence of hurricanes on the rate of shoreline retreat, 35 years (1983–2018) of Landsat imagery was analyzed. During that period of time, the shoreline has retreated 292 m. The overall rate of shoreline retreat, prior to a beach re-nourishment project completed in 2014, was over 12 m per year. A period of high hurricane frequency (1998–2013) corresponds to an increased average shoreline retreat rate of >21 m per year. Coastal features created by multiple hurricanes that have impacted this site have persisted for several years. Bay Champagne has lost 48% of its surface area over the last 35 years as a result of long-term shoreline retreat. If shoreline retreat continues at the average rate, it is expected that Bay Champagne will disappear completely within the next 40 years. 
    more » « less
  4. null (Ed.)
    This study investigates coastal erosion, revetment as a shoreline protection strategy, and human perceptions of revetments in the Lower Meghna estuary of the Bangladesh where new revetments were recently constructed. Questions addressed were: (1) How do rates of shoreline change vary over the period 2011–2019? (2) Did new revetments effectively halt erosion and what were the magnitudes of erosion change? (3) How have erosion rates changed for shorelines within 1 km of revetments, and (4) How do households perceive revetments? High-resolution Planet Lab imagery was used to quantify shoreline change rates. Analysis of household survey data assessed human perceptions of the revetment’s desirability and efficacy. Results revealed high rates of erosion for 2011–2019 with declining erosion after 2013. New revetments effectively halted erosion for protected shorelines. Significant spatial trends for erosion rates existed for shorelines adjacent to revetments. Survey respondents overwhelmingly had positive attitudes about a desire for revetment protection; however, upstream respondents expressed a strong majority perception that revetment acts to make erosion worse. Highlights of the research include integration of remote sensing with social science methods, the timing of the social survey shortly after revetment construction, and results showing significant erosion change upstream and downstream of new revetments. 
    more » « less
  5. Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection. 
    more » « less