skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protoglobin‐Catalyzed Formation of cis ‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer
Abstract Trifluoromethyl‐substituted cyclopropanes (CF3‐CPAs) constitute an important class of compounds for drug discovery. While several methods have been developed for synthesis oftrans‐CF3‐CPAs, stereoselective production of correspondingcis‐diastereomers remains a formidable challenge. We report a biocatalyst for diastereo‐ and enantio‐selective synthesis ofcis‐CF3‐CPAs with activity on a variety of alkenes. We found that an engineered protoglobin fromAeropyrnum pernix(ApePgb) can catalyze this unusual reaction at preparative scale with low‐to‐excellent yield (6–55 %) and enantioselectivity (17–99 % ee), depending on the substrate. Computational studies revealed that the steric environment in the active site of the protoglobin forced iron‐carbenoid and substrates to adopt a pro‐cisnear‐attack conformation. This work demonstrates the capability of enzyme catalysts to tackle challenging chemistry problems and provides a powerful means to expand the structural diversity of CF3‐CPAs for drug discovery.  more » « less
Award ID(s):
2016137
PAR ID:
10391584
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
4
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, we report the regiospecific and stereoselective synthesis of novel pyrrolo thioxoimidazolidinones with promising biological activities due to the inherent pharmaceutical properties of thioxoimidazolidinone core. The reaction of different thioxoimidazolidinones withtrans‐4‐ethoxy‐1,1,1‐trifluorobut‐3‐en‐2‐one (ETFBO) yields bicyclic 1,3‐diaza heterocycles bearing the trifluoromethyl (CF3) moiety. Our investigation involved both depth experimental analysis and theoretical calculations to fathom out the mode of reaction of this building block and elucidate the underlying mechanism operating for the observed reactions. Remarkably, this unusual mechanism retained the ethanol moiety from the building block in the final products, deviating from conventional nucleophilic reactions reported in the literature. 
    more » « less
  2. Abstract The catalytic one‐bond isomerization (transposition) of 1‐alkenes is an emerging approach toZ‐2‐alkenes. Design of more selective catalysts would benefit from a mechanistic understanding of factors controllingZselectivity. We propose here a reaction pathway forcis‐Mo(CO)4(PCy3)(piperidine) (3), a precatalyst that shows highZselectivity for transposition of alpha olefins (e. g., 1‐octene to 2‐octene, 18 : 1Z : Eat 74 % conversion). Computational modeling of reaction pathways and isotopic labeling suggests the isomerization takes place via an allyl (1,3‐hydride shift) pathway, where oxidative addition offac‐(CO)3Mo(PCy3)(η2‐alkene) is followed by hydride migration from one position (cisto allyl C3carbon) to another (cisto allyl C1carbon) via hydride/CO exchanges. Calculated barriers for the hydride migration pathway are lower than explored alternative mechanisms (e. g., change of allyl hapticity, allyl rotation). To our knowledge, this is the first study to propose such a hydride migration in alkene isomerization. 
    more » « less
  3. An updated fit to the interacting levelsν3andν6of CF3I has been evaluated in this work. 
    more » « less
  4. Abstract The 1,4‐diacyloxylation of 1,3‐cyclohexadiene (CHD) affords valuable stereochemically defined scaffolds for natural product and pharmaceutical synthesis. Existingcis‐selective diacyloxylation protocols require superstoichiometric quantities of benzoquinone (BQ) or MnO2, which limit process sustainability and large‐scale application. In this report, reaction development and mechanistic studies are described that overcome these limitations by pairing catalytic BQ withtert‐butyl hydroperoxide as the stoichiometric oxidant. Catalytic quantities of bromide enable a switch fromtranstocisdiastereoselectivity. A catalyst with a 1:2 Pd:Br ratio supports highcisselectivity while retaining good rate and product yield. Further studies enable replacement of BQ with hydroquinone (HQ) as a source of cocatalyst, avoiding the handling of volatile and toxic BQ in large‐scale applications. 
    more » « less
  5. Abstract In this comprehensive review, I focus on the twentyE. coliaminoacyl‐tRNA synthetases and their ability to charge non‐canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20E. coliaminoacyl‐tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery. 
    more » « less