skip to main content


Title: Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria
Abstract

Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBERecApis efficient in creating base edits in strains ofXanthomonas,Pseudomonas,ErwiniaandAgrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate inPseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates ofXanthomonas oryzaepv.oryzaerevealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBERecAp-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.

 
more » « less
NSF-PAR ID:
10391591
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
6
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Facile bacterial genome sequencing has unlocked a veritable treasure trove of novel genes awaiting functional exploration. To make the most of this opportunity requires powerful genetic tools that can target all genes in diverse bacteria. CRISPR interference (CRISPRi) is a programmable gene‐knockdown tool that uses an RNA‐protein complex comprised of a single guide RNA (sgRNA) and a catalytically inactive Cas9 nuclease (dCas9) to sterically block transcription of target genes. We previously developed a suite of modular CRISPRi systems that transfer by conjugation and integrate into the genomes of diverse bacteria, which we call Mobile‐CRISPRi. Here, we provide detailed protocols for the modification and transfer of Mobile‐CRISPRi vectors for the purpose of knocking down target genes in bacteria of interest. We further discuss strategies for optimizing Mobile‐CRISPRi knockdown, transfer, and integration. We cover the following basic protocols: sgRNA design, cloning new sgRNA spacers into Mobile‐CRISPRi vectors, Tn7transfer of Mobile‐CRISPRi to Gram‐negative bacteria, and ICEBs1transfer of Mobile‐CRISPRi to Bacillales. © 2020 The Authors.

    Basic Protocol 1: sgRNA design

    Basic Protocol 2: Cloning of new sgRNA spacers into Mobile‐CRISPRi vectors

    Basic Protocol 3: Tn7transfer of Mobile‐CRISPRi to Gram‐negative bacteria

    Basic Protocol 4: ICEBs1transfer of Mobile‐CRISPRi to Bacillales

    Support Protocol 1: Quantification of CRISPRi repression using fluorescent reporters

    Support Protocol 2: Testing for gene essentiality using CRISPRi spot assays on plates

    Support Protocol 3: Transformation ofE. coliby electroporation

    Support Protocol 4: Transformation of CaCl2‐competentE. coli

     
    more » « less
  2. Summary

    Cytosine base editors (CBEs) are great additions to the expanding genome editing toolbox. To improve C‐to‐T base editing in plants, we first compared seven cytidine deaminases in the BE3‐like configuration in rice. We found A3A/Y130F‐CBE_V01 resulted in the highest C‐to‐T base editing efficiency in both rice andArabidopsis. Furthermore, we demonstrated this A3A/Y130F cytidine deaminase could be used to improve iSpyMacCas9‐mediated C‐to‐T base editing at A‐rich PAMs. To showcase its applications, we first applied A3A/Y130F‐CBE_V01 for multiplexed editing to generate microRNA‐resistant mRNA transcripts as well as pre‐mature stop codons in multiple seed trait genes. In addition, we harnessed A3A/Y130F‐CBE_V01 for efficient artificial evolution of novelALSandEPSPSalleles which conferred herbicide resistance in rice. To further improve C‐to‐T base editing, multiple CBE_V02, CBE_V03 and CBE_V04 systems were developed and tested in rice protoplasts. The CBE_V04 systems were found to have improved editing activity and purity with focal recruitment of more uracil DNA glycosylase inhibitors (UGIs) by the engineered single guide RNA 2.0 scaffold. Finally, we used whole‐genome sequencing (WGS) to compare six CBE_V01 systems and four CBE_V04 systems for genome‐wide off‐target effects in rice. Different levels of cytidine deaminase‐dependent and sgRNA‐independent off‐target effects were indeed revealed by WGS among edited lines by these CBE systems. We also investigated genome‐wide sgRNA‐dependent off‐target effects by different CBEs in rice. This comprehensive study compared 21 different CBE systems, and benchmarked PmCDA1‐CBE_V04 and A3A/Y130F‐CBE_V04 as next‐generation plant CBEs with high editing efficiency, purity, and specificity.

     
    more » « less
  3. Cytosine base editors (CBEs) enable efficient cytidine-to-thymidine (C-to-T) substitutions at targeted loci without double-stranded breaks. However, current CBEs edit all Cs within their activity windows, generating undesired bystander mutations. In the most challenging circumstance, when a bystander C is adjacent to the targeted C , existing base editors fail to discriminate them and edit both Cs. To improve the precision of CBE, we identified and engineered the human APOBEC3G (A3G) deaminase; when fused to the Cas9 nickase, the resulting A3G-BEs exhibit selective editing of the second C in the 5′-C C -3′ motif in human cells. Our A3G-BEs could install a single disease-associated C-to-T substitution with high precision. The percentage of perfectly modified alleles is more than 6000-fold for disease correction and more than 600-fold for disease modeling compared with BE4max. On the basis of the two-cell embryo injection method and RNA sequencing analysis, our A3G-BEs showed minimum genome- and transcriptome-wide off-target effects, achieving high targeting fidelity. 
    more » « less
  4. Summary

    Using genetic resistance against bacterial blight (BB) caused byXanthomonas oryzaepathovaroryzae(Xoo) is a major objective in rice breeding programmes. Prime editing (PE) has the potential to create novel germplasm againstXoo. Here, we use an improved prime‐editing system to implement two new strategies for BB resistance. Knock‐in of TAL effector binding elements (EBE) derived from the BB susceptible geneSWEET14into the promoter of a dysfunctional executorRgenexa23reaches 47.2% with desired edits including biallelic editing at 18% in T0generation that enables an inducible TALE‐dependent BB resistance. Editing the transcription factor TFIIA geneTFIIAγ5required for TAL effector‐dependent BB susceptibility recapitulates the resistance ofxa5at an editing efficiency of 88.5% with biallelic editing rate of 30% in T0generation. The engineered loci provided resistance against multipleXoostrains in T1generation. Whole‐genome sequencing detected noOsMLH1dn‐associated random mutations and no off‐target editing demonstrating high specificity of this PE system. This is the first‐ever report to use PE system to engineer resistance against biotic stress and to demonstrate knock‐in of 30‐nucleotides cis‐regulatory element at high efficiency. The new strategies hold promises to fend rice off the evolvingXoostrains and protect it from epidemics.

     
    more » « less
  5. Abstract

    The partnership of DNA deaminase enzymes with CRISPR-Cas nucleases is now a well-established method to enable targeted genomic base editing. However, an understanding of how Cas9 and DNA deaminases collaborate to shape base editor (BE) outcomes has been lacking. Here, we support a novel mechanistic model of base editing by deriving a range of hyperactive activation-induced deaminase (AID) base editors (hBEs) and exploiting their characteristic diversifying activity. Our model involves multiple layers of previously underappreciated cooperativity in BE steps including: (i) Cas9 binding can potentially expose both DNA strands for ‘capture’ by the deaminase, a feature that is enhanced by guide RNA mismatches; (ii) after strand capture, the intrinsic activity of the DNA deaminase can tune window size and base editing efficiency; (iii) Cas9 defines the boundaries of editing on each strand, with deamination blocked by Cas9 binding to either the PAM or the protospacer and (iv) non-canonical edits on the guide RNA bound strand can be further elicited by changing which strand is nicked by Cas9. Leveraging insights from our mechanistic model, we create novel hBEs that can remarkably generate simultaneous C > T and G > A transitions over >65 bp with significant potential for targeted gene diversification.

     
    more » « less