Cyanobacteria have been proposed as a potential alternative carbohydrate feedstock and multiple species have been successfully engineered to secrete fermentable sugars. To date, the most productive cyanobacterial strains are those designed to secrete sucrose, yet there exist considerable differences in reported productivities across different model species and laboratories. In this study, we investigate how cultivation conditions (specifically, irradiance, CO2, and cultivator type) affect the productivity of sucrose-secretingSynechococcus elongatusPCC 7942. We find thatS. elongatusproduces the highest sucrose yield in irradiances far greater than what is often experimentally utilized, and that high light intensities are tolerated byS. elongatus, especially under higher density cultivation where turbidity may attenuate the effective light experienced in the culture. By increasing light and inorganic carbon availability,S. elongatus cscB/spsproduced a total of 3.8 g L-1of sucrose and the highest productivity within that period being 47.8 mg L-1h-1. This study provides quantitative description of the impact of culture conditions on cyanobacteria-derived sucrose that may assist to standardize cross-laboratory comparisons and demonstrates a significant capacity to improve productivity via optimizing cultivation conditions.
more »
« less
Photobiological production of high-value pigments via compartmentalized co-cultures using Ca-alginate hydrogels
Abstract Engineered cyanobacterium Synechococcus elongatus can use light and CO 2 to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem where S. elongatus is freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producing Yarrowia lipolytica or indigoidine-producing Pseudomonas putida ) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15–22-fold higher than in a comparable co-culture without encapsulation. Moreover, 13 C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.
more »
« less
- Award ID(s):
- 2037887
- PAR ID:
- 10391668
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.more » « less
-
With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided. The protocol describes the key prerequisites for co-culture establishment: Defining the media composition, monitoring the growth characteristics of individual partners, and the analysis of mixed cultures with multiple species combined in the same growth vessel. Basic laboratory techniques for co-culture monitoring, including microscopy, cell counter, and single-cell flow cytometry, are summarized, and examples of nonproprietary software to use for data analysis of raw flow cytometry standard (FCS) files in line with FAIR (Findable, Accessible, Interoperable, Reusable) principles are provided. Finally, commentary on the bottlenecks and pitfalls frequently encountered when attempting to establish a co-culture with sugar-secreting cyanobacteria and a novel heterotrophic partner is included. This protocol provides a resource for researchers attempting to establish a new pair of co-cultured microbes that includes a cyanobacterium and a heterotrophic microbe.more » « less
-
Abstract The field of engineered living materials lies at the intersection of materials science and synthetic biology with the aim of developing materials that can sense and respond to the environment. In this study, we use 3D printing to fabricate a cyanobacterial biocomposite material capable of producing multiple functional outputs in response to an external chemical stimulus and demonstrate the advantages of utilizing additive manufacturing techniques in controlling the shape of the fabricated photosynthetic material. As an initial proof-of-concept, a synthetic riboswitch is used to regulate the expression of a yellow fluorescent protein reporter inSynechococcus elongatusPCC 7942 within a hydrogel matrix. Subsequently, a strain ofS. elongatusis engineered to produce an oxidative laccase enzyme; when printed within a hydrogel matrix the responsive biomaterial can decolorize a common textile dye pollutant, indigo carmine, potentially serving as a tool in environmental bioremediation. Finally, cells are engineered for inducible cell death to eliminate their presence once their activity is no longer required, which is an important function for biocontainment and minimizing environmental impact. By integrating genetically engineered stimuli-responsive cyanobacteria in volumetric 3D-printed designs, we demonstrate programmable photosynthetic biocomposite materials capable of producing functional outputs including, but not limited to, bioremediation.more » « less
-
A multifunctional polysaccharide-based hydrogel was studied as an additive for enhancing microalgae growth. The hydrogel was fabricated by physically and chemically crosslinking renewable ingredients of carboxymethyl cellulose (CMC), arrowroot starch, and activated biochar modified with iron using a bio-crosslinker of oxidized sucrose and a plasticizer of glycerol. The optimum formula for the hydrogel with a high swelling ratio, BET surface area, and electrical conductivity was found to include 1 g starch, 3 g CMC, 1.5 g biochar, 15 mL oxidized sucrose, and 1.5 mL glycerol in 200 mL deionized water. The algal yield and cell concentration after 14 days of growth in a Bold basal medium with an optimum concentration of 2.5 g hydrogel/L increased by 65.7 % and 92.2 %, respectively, compared to those of the control without the hydrogel. However, if the hydrogel concentration in the culture increased to 12.5 g/L, the algal yield was decreased by 67.8 % compared to the control due to oxidative injury. The hydrogel additive could significantly increase the nitrogen but decrease the carbon, hydrogen, and sulfur contents of the microalgae. The algal yield with 2.5 g/L hydrogel additive improved by 13.9 % compared to the algal yield with the same amounts of individual non–crosslinked hydrogel ingredients.more » « less
An official website of the United States government

