skip to main content

This content will become publicly available on August 31, 2023

Title: A Ubiquitously Conserved Cyanobacterial Protein Phosphatase Essential for High Light Tolerance in a Fast-Growing Cyanobacterium
ABSTRACT Synechococcus elongatus UTEX 2973, the fastest-growing cyanobacterial strain known, optimally grows under extreme high light (HL) intensities of 1,500–2,500 μmol photons m −2 s −1 , which is lethal to most other photosynthetic microbes. We leveraged the few genetic differences between Synechococcus 2973 and the HL sensitive strain Synechococcus elongatus PCC 7942 to unravel factors essential for the high light tolerance. We identified a novel protein in Synechococcus 2973 that we have termed HltA for H igh l ight t olerance protein A . Using bioinformatic tools, we determined that HltA contains a functional PP2C-type protein phosphatase domain. Phylogenetic analysis showed that the PP2C domain belongs to the bacterial-specific Group II family and is closely related to the environmental stress response phosphatase RsbU. Additionally, we showed that unlike any previously described phosphatases, HltA contains a single N-terminal regulatory GAF domain. We found hltA to be ubiquitous throughout cyanobacteria, indicative of its potentially important role in the photosynthetic lifestyle of these oxygenic phototrophs. Mutations in the hltA gene resulted in severe defects specific to high light growth. These results provide evidence that hltA is a key factor in the tolerance of Synechococcus 2973 to high light and will open new insights more » into the mechanisms of cyanobacterial light stress response. IMPORTANCE Cyanobacteria are a diverse group of photosynthetic prokaryotes. The cyanobacterium Synechococcus 2973 is a high light tolerant strain with industrial promise due to its fast growth under high light conditions and the availability of genetic modification tools. Currently, little is known about the high light tolerance mechanisms of Synechococcus 2973, and there are many unknowns overall regarding high light tolerance of cyanobacteria. In this study, a comparative genomic analysis of Synechococcus 2973 identified a single nucleotide polymorphism in a locus encoding a serine phosphatase as a key factor for high light tolerance. This novel GAF-containing phosphatase was found to be the sole Group II metal-dependent protein phosphatase that is evolutionarily conserved throughout cyanobacteria. These results shed new light on the light response mechanisms of Synechococcus 2973, improving our understanding of environmental stress response. Additionally, this work will help facilitate the development of Synechococcus 2973 as an industrially useful organism. « less
Authors:
;
Editors:
Youssef, Noha H.
Award ID(s):
2037887
Publication Date:
NSF-PAR ID:
10391670
Journal Name:
Microbiology Spectrum
Volume:
10
Issue:
4
ISSN:
2165-0497
Sponsoring Org:
National Science Foundation
More Like this
  1. Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second, GAF-independent, means of sensing light to regulate motility and provide insight into how a chemotaxis-like system regulates the T4P motors. A combination of genetic, cytological, and protein–protein interaction analyses, along with experiments using the proton ionophore carbonyl cyanide m-chlorophenyl hydrazine, indicate that the Hmp chemotaxis-like system of the model filamentous cyanobacteriumNostoc punctiformeis capable of sensing light indirectly, possibly via alterations in proton motive force, and modulates direct interaction between the cyanobacterial taxis protein HmpF, and Hfq, PilT1, and PilT2 to regulate the T4P motors. Given that the Hmp system is widely conserved in cyanobacteria, and the finding from this study that orthologs of HmpF and T4P proteins from the distantly related model unicellular cyanobacteriumSynechocystissp. strain PCC6803 interact in amore »similar manner to theirN. punctiformecounterparts, it is likely that this represents a ubiquitous means of regulating motility in response to light in cyanobacteria.

    « less
  2. Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed “phototaxis,” enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacteriumSynechocystissp. strain PCC 6803, but the rod-shapedSynechococcus elongatusPCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate ofS. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe(Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ fromSynechocystis. Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSeto sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSecontrols both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis inSynechocystis.

  3. Abstract

    Photosynthetic organisms possess a variety of mechanisms to achieve balance between absorbed light (source) and the capacity to metabolically utilize or dissipate this energy (sink). While regulatory processes that detect changes in metabolic status/balance are relatively well studied in plants, analogous pathways remain poorly characterized in photosynthetic microbes. Here, we explored systemic changes that result from alterations in carbon availability in the model cyanobacterium Synechococcus elongatus PCC 7942 by taking advantage of an engineered strain where influx/efflux of a central carbon metabolite, sucrose, can be regulated experimentally. We observed that induction of a high-flux sucrose export pathway leads to depletion of internal carbon storage pools (glycogen) and concurrent increases in estimates of photosynthetic activity. Further, a proteome-wide analysis and fluorescence reporter-based analysis revealed that upregulated factors following the activation of the metabolic sink are concentrated on ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and auxiliary modules involved in Rubisco maturation. Carboxysome number and Rubisco activity also increased following engagement of sucrose secretion. Conversely, reversing the flux of sucrose by feeding exogenous sucrose through the heterologous transporter resulted in increased glycogen pools, decreased Rubisco abundance, and carboxysome reorganization. Our data suggest that Rubisco activity and organization are key variables connected to regulatory pathways involvedmore »in metabolic balancing in cyanobacteria.

    « less
  4. Komeili, Arash (Ed.)
    ABSTRACT Cyanobacteria are the prokaryotic group of phytoplankton responsible for a significant fraction of global CO 2 fixation. Like plants, cyanobacteria use the enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco) to fix CO 2 into organic carbon molecules via the Calvin-Benson-Bassham cycle. Unlike plants, cyanobacteria evolved a carbon-concentrating organelle called the carboxysome—a proteinaceous compartment that encapsulates and concentrates Rubisco along with its CO 2 substrate. In the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, we recently identified the McdAB system responsible for uniformly distributing carboxysomes along the cell length. It remains unknown what role carboxysome positioning plays with respect to cellular physiology. Here, we show that a failure to distribute carboxysomes leads to slower cell growth, cell elongation, asymmetric cell division, and elevated levels of cellular Rubisco. Unexpectedly, we also report that even wild-type S. elongatus undergoes cell elongation and asymmetric cell division when grown at the cool, but environmentally relevant, growth temperature of 20°C or when switched from a high- to ambient-CO 2 environment. The findings suggest that carboxysome positioning by the McdAB system functions to maintain the carbon fixation efficiency of Rubisco by preventing carboxysome aggregation, which is particularly important under growth conditions where rod-shaped cyanobacteria adopt a filamentous morphology. IMPORTANCEmore »Photosynthetic cyanobacteria are responsible for almost half of global CO 2 fixation. Due to eutrophication, rising temperatures, and increasing atmospheric CO 2 concentrations, cyanobacteria have gained notoriety for their ability to form massive blooms in both freshwater and marine ecosystems across the globe. Like plants, cyanobacteria use the most abundant enzyme on Earth, Rubisco, to provide the sole source of organic carbon required for its photosynthetic growth. Unlike plants, cyanobacteria have evolved a carbon-concentrating organelle called the carboxysome that encapsulates and concentrates Rubisco with its CO 2 substrate to significantly increase carbon fixation efficiency and cell growth. We recently identified the positioning system that distributes carboxysomes in cyanobacteria. However, the physiological consequence of carboxysome mispositioning in the absence of this distribution system remains unknown. Here, we find that carboxysome mispositioning triggers changes in cell growth and morphology as well as elevated levels of cellular Rubisco.« less
  5. Abstract

    Many microbial photoautotrophs depend on heterotrophic bacteria for accomplishing essential functions. Environmental changes, however, could alter or eliminate such interactions. We investigated the effects of changing pCO2on gene transcription in co-cultures of 3 strains of picocyanobacteria (Synechococcusstrains CC9311 and WH8102 andProchlorococcusstrain MIT9312) paired with the ‘helper’ bacteriumAlteromonas macleodiiEZ55. Co-culture with cyanobacteria resulted in a much higher number of up- and down-regulated genes in EZ55 than pCO2by itself. Pathway analysis revealed significantly different transcription of genes involved in carbohydrate metabolism, stress response, and chemotaxis, with different patterns of up- or down-regulation in co-culture with different cyanobacterial strains. Gene transcription patterns of organic and inorganic nutrient transporter and catabolism genes in EZ55 suggested resources available in the culture media were altered under elevated (800 ppm) pCO2conditions. Altogether, changing transcription patterns were consistent with the possibility that the composition of cyanobacterial excretions changed under the two pCO2regimes, causing extensive ecophysiological changes in both members of the co-cultures. Additionally, significant downregulation of oxidative stress genes in MIT9312/EZ55 cocultures at 800 ppm pCO2were consistent with a link between the predicted reduced availability of photorespiratory byproducts (i.e., glycolate/2PG) under this condition and observed reductions in internal oxidative stress loads for EZ55, providing a possible explanationmore »for the previously observed lack of “help” provided by EZ55 to MIT9312 under elevated pCO2. If similar broad alterations in microbial ecophysiology occur in the ocean as atmospheric pCO2increases, they could lead to substantially altered ecosystem functioning and community composition.

    « less