skip to main content


Title: Experimental warming weakens positive plant diversity effects on pitfall trap sampled ant diversity.
Abstract Ants are important components of many terrestrial ecosystems because of their high abundance, their central position in food webs, and because they can strongly influence ecosystem properties such as soil aeration, nutrient cycling, and plant community composition. Moreover, ants are also known to respond strongly to changes in environmental and biological conditions. In particular, two major anthropogenic environmental impacts – climate change and the loss of primary producers – may have interactive effects on ant communities. To examine this potential interaction, we quantified pitfall trap sampled ant diversity and activity across a fully factorial experiment manipulating temperature and grassland plant species richness at the Cedar Creek Ecosystem Science Reserve in Minnesota, USA. Consistent with previous arthropod studies, we found a significant increase in sampled ant diversity in plots with higher sown plant species richness, such that plots with the largest number of plant species also had the highest sampled ant diversity. However, the strength of this relationship declined significantly in experimentally warmed subplots, especially when considered for higher aggregated spatial scales of samples. Taken together, these results suggest that the positive effects of plant diversity on sampled ant diversity may be partially undermined under warmer conditions.  more » « less
Award ID(s):
1831944
NSF-PAR ID:
10391690
Author(s) / Creator(s):
Date Published:
Journal Name:
Soil organisms
Volume:
94
Issue:
1
ISSN:
2509-9523
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Given their high environmental variation over relatively short distances, mountains represent ideal systems for evaluating potential factors shaping diversity gradients. Despite a long‐standing interest in ecological gradients, ant diversity patterns and their related mechanisms occurring on mountains are still not well understood. Here, we (i) describe species diversity patterns (α and β) of leaf‐litter ants along the eastern slope of Cofre de Perote in Veracruz, Mexico; and (ii) evaluate climatic and spatial factors in determining these patterns.

    Location

    Veracruz, Mexico.

    Taxon

    Leaf‐litter ants.

    Methods

    We sampled 320 m2of leaf litter spread across eight equally spaced sites from sea level to 3500 m of elevation. We used regression models to predict α‐diversity patterns with climatic (temperature and precipitation) and spatial (geometric constraints) variables. We also assessed, through multiple regression based on distance matrices (MRM), the relative importance of habitat filtering and dispersal limitations for shaping total dissimilarity (βsor), turnover (βsim) and nestedness (βnes).

    Results

    A hump‐shaped pattern was observed in the α‐diversity. This pattern is best explained by the temperature gradient. β‐diversity showed a nonlinear pattern along the elevational gradient with total dissimilarity and turnover components better explained by habitat filtering (i.e. temperature distances). Turnover had higher contribution to total dissimilarity rather than the nestedness component.

    Main conclusions

    The significance effect of temperature on both α‐ and β‐diversity patterns reinforces its widespread importance in shaping litter ant diversity patterns across elevational gradients. The hump‐shaped pattern in species richness is probably the result of harsh abiotic conditions at the base and the top of the mountain combined with biotic attrition in lowland sites. The niche specialization of ant species in their optimal thermal zones may explain total dissimilarity and ant species replacement along the studied gradient. Taken all together, these results suggest a high relevance of temperature‐driven mechanisms in the origin and maintenance of the biodiversity of such insects and probably another ectothermic taxa.

     
    more » « less
  2. Abstract

    The diversity of primary producers strongly affects the structure and diversity of species assemblages at other trophic levels. However, limited knowledge exists of how plant diversity effects at small spatial scales propagate to consumer communities at larger spatial scales. We assessed arthropod community β and γ‐diversity in response to experimentally manipulated plant community richness in two long‐term grassland biodiversity experiments (Jena, Germany and Cedar Creek, USA) replicated over two years. We calculated arthropod species turnover among all plot combinations (β‐diversity), and accumulated number of arthropod species occurring on (1) all pairwise plot combinations and (2) 40 randomly selected six‐plot combinations (γ‐diversity). The components of arthropod diversity were tested against two measures of plant diversity, namely average plant α‐diversity () and the average difference in plant α‐diversity between plots (ΔPSR). Whereas points to the overall importance of plant α‐diversity for arthropod community turnover and diversity on a larger scale, ΔPSR represents the role of habitat heterogeneity. We demonstrate that arthropod γ‐diversity is supported by high, homogeneous plant α‐diversity, despite lower arthropod β‐diversity among high‐ compared to low‐diversity plant communities. We also show that, in six‐plot combinations, average plant α‐diversity has a positive influence on arthropod γ‐diversity only when homogeneity in plant α‐diversity is also high. Varying heterogeneity in six‐plot combinations showed that combinations consisting solely of plots with an intermediate level of plant α‐diversity support a higher number of arthropod species compared to combinations that contain a mix of high‐ and low‐diversity plots. In fact, equal levels of arthropod diversity were found for six‐plot combinations with only intermediate or high plant α‐diversity, due to saturating benefits of local and larger‐scale plant diversity for higher trophic levels. Our results, alongside those of recent observational studies, strongly suggest that maintaining high α‐diversity in plant communities is important for conserving multiple components of arthropod diversity. As arthropods carry out a range of essential ecosystem functions, such as pollination and natural pest‐control, our findings provide crucial insight for effective planning of human‐dominated landscapes to maximize both ecological and economic benefits in grassland systems.

     
    more » « less
  3. Abstract

    Changes in trophic niche—the pathways through which an organism obtains energy and nutrients—are a fundamental way in which organisms respond to environmental conditions. But the capacity for species to alter their trophic niches in response to global change, and the ways they do so when able, remain largely unknown.

    Here we examine food webs in three long‐term and large‐scale experiments to test how resource availability and nutritional requirements interact to determine an organism's trophic niche in the context of one of the largest global trends in land use—the rise in bioenergy production.

    We use carbon and nitrogen stable isotope analyses to characterize arthropod food webs across three biofuel crops representing a gradient in plant resource richness (corn monocultures, fields dominated by native switchgrass and restored prairie), and to quantify changes in the trophic niche of a widespread generalist ant species across habitats. In doing so, we measure the effects of basal resource richness on food chain length, niche breadth and trophic position. We frame our results in the context of two hypotheses that explain variation in trophic niche—the niche variation hypothesis which emphasizes the importance of resource diversity and ecological opportunity, and the optimal diet hypothesis which emphasizes dietary constraints and the availability of optimal resources.

    Increasing plant richness lengthened food chains by 10%–20% compared to monocultures. Niche breadths of generalist ants did not vary with resource richness, suggesting they were limited by optimal diet requirements and constraints rather than by ecological opportunity. The ants instead responded to changes in plant richness by shifting their estimated trophic position. In resource‐poor monocultures, the ants were top predators, sharing a trophic position with predatory spiders. In resource‐rich environments, in contrast, the ants were omnivores, relying on a mix of animal prey and plant‐based resources.

    In addition to highlighting novel ecosystem impacts of alternate bioenergy landscapes, our results suggest that niche breadth and trophic diversification depend more on the presence of optimal resources than on ecological opportunity alone.

     
    more » « less
  4. null (Ed.)
    Gopher Tortoise (Gopherus polyphemus) burrows support diverse commensal invertebrate communities that may be of special conservation interest. We investigated the impact of red imported fire ants (Solenopsis invicta) on the invertebrate burrow community at 10 study sites in southern Mississippi, sampling burrows (1998–2000) before and after bait treatments to reduce fire ant populations. We sampled invertebrates using an ant bait attractant for ants and burrow vacuums for the broader invertebrate community and calculated fire ant abundance, invertebrate abundance, species richness, and species diversity. Fire ant abundance in gopher tortoise burrows was reduced by >98% in treated sites. There was a positive treatment effect on invertebrate abundance, diversity, and species richness from burrow vacuum sampling which was not observed in ant sampling from burrow baits. Management of fire ants around burrows may benefit both threatened gopher tortoises by reducing potential fire ant predation on hatchlings, as well as the diverse burrow invertebrate community. Fire-ant management may also benefit other species utilizing tortoise burrows, such as the endangered Dusky Gopher Frog and Schaus swallowtail butterfly. This has implications for more effective biodiversity conservation via targeted control of the invasive fire ant at gopher tortoise burrows. 
    more » « less
  5. Abstract

    Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.

     
    more » « less