skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental warming weakens positive plant diversity effects on pitfall trap sampled ant diversity.
Abstract Ants are important components of many terrestrial ecosystems because of their high abundance, their central position in food webs, and because they can strongly influence ecosystem properties such as soil aeration, nutrient cycling, and plant community composition. Moreover, ants are also known to respond strongly to changes in environmental and biological conditions. In particular, two major anthropogenic environmental impacts – climate change and the loss of primary producers – may have interactive effects on ant communities. To examine this potential interaction, we quantified pitfall trap sampled ant diversity and activity across a fully factorial experiment manipulating temperature and grassland plant species richness at the Cedar Creek Ecosystem Science Reserve in Minnesota, USA. Consistent with previous arthropod studies, we found a significant increase in sampled ant diversity in plots with higher sown plant species richness, such that plots with the largest number of plant species also had the highest sampled ant diversity. However, the strength of this relationship declined significantly in experimentally warmed subplots, especially when considered for higher aggregated spatial scales of samples. Taken together, these results suggest that the positive effects of plant diversity on sampled ant diversity may be partially undermined under warmer conditions.  more » « less
Award ID(s):
1831944
PAR ID:
10391690
Author(s) / Creator(s):
Date Published:
Journal Name:
Soil organisms
Volume:
94
Issue:
1
ISSN:
2509-9523
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Gopher Tortoise (Gopherus polyphemus) burrows support diverse commensal invertebrate communities that may be of special conservation interest. We investigated the impact of red imported fire ants (Solenopsis invicta) on the invertebrate burrow community at 10 study sites in southern Mississippi, sampling burrows (1998–2000) before and after bait treatments to reduce fire ant populations. We sampled invertebrates using an ant bait attractant for ants and burrow vacuums for the broader invertebrate community and calculated fire ant abundance, invertebrate abundance, species richness, and species diversity. Fire ant abundance in gopher tortoise burrows was reduced by >98% in treated sites. There was a positive treatment effect on invertebrate abundance, diversity, and species richness from burrow vacuum sampling which was not observed in ant sampling from burrow baits. Management of fire ants around burrows may benefit both threatened gopher tortoises by reducing potential fire ant predation on hatchlings, as well as the diverse burrow invertebrate community. Fire-ant management may also benefit other species utilizing tortoise burrows, such as the endangered Dusky Gopher Frog and Schaus swallowtail butterfly. This has implications for more effective biodiversity conservation via targeted control of the invasive fire ant at gopher tortoise burrows. 
    more » « less
  2. Abstract Mutualism benefits partner species, and theory predicts these partnerships can affect the abundance, diversity, and composition of partner and non‐partner species. We used 16 years of monitoring data to determine the ant partner species of tree cholla cacti (Cylindropuntia imbricata), which reward ants with extrafloral nectar in exchange for anti‐herbivore defense. These long‐term data revealed one dominant ant partner (Liometopum apiculatum) and two less common partners (Crematogaster opuntiaeandForelius pruinosus). We then used short‐term characterization of the terrestrial ant community by pitfall trapping to sample partner and non‐partner ant species across ten plots of varying cactus density. We found that the dominant ant partner tended a higher proportion cacti in plots of higher cactus density, and was also found at higher occurrence within the pitfall traps in higher density plots, suggesting a strong positive feedback that promotes ant partner occurrence where plant partners are available. Despite the strong association and increased partner occurrence, ant community‐wide effects from this mutualism appear limited. Of the common ant species, the occurrence of a single non‐partner ant species was negatively associated with cactus density and with the increased presence ofL. apiculatum. Additionally, the composition and diversity of the ant community in our plots were insensitive to cactus density variation, indicating that positive effects of the mutualism on the dominant ant partner did not have cascading impacts on the ant community. This study provides novel evidence that exclusive mutualisms, even those with a strong positive feedback, may be limited in the scope of their community‐level effects. 
    more » « less
  3. Abstract The diversity of primary producers strongly affects the structure and diversity of species assemblages at other trophic levels. However, limited knowledge exists of how plant diversity effects at small spatial scales propagate to consumer communities at larger spatial scales. We assessed arthropod community β and γ‐diversity in response to experimentally manipulated plant community richness in two long‐term grassland biodiversity experiments (Jena, Germany and Cedar Creek, USA) replicated over two years. We calculated arthropod species turnover among all plot combinations (β‐diversity), and accumulated number of arthropod species occurring on (1) all pairwise plot combinations and (2) 40 randomly selected six‐plot combinations (γ‐diversity). The components of arthropod diversity were tested against two measures of plant diversity, namely average plant α‐diversity () and the average difference in plant α‐diversity between plots (ΔPSR). Whereas points to the overall importance of plant α‐diversity for arthropod community turnover and diversity on a larger scale, ΔPSR represents the role of habitat heterogeneity. We demonstrate that arthropod γ‐diversity is supported by high, homogeneous plant α‐diversity, despite lower arthropod β‐diversity among high‐ compared to low‐diversity plant communities. We also show that, in six‐plot combinations, average plant α‐diversity has a positive influence on arthropod γ‐diversity only when homogeneity in plant α‐diversity is also high. Varying heterogeneity in six‐plot combinations showed that combinations consisting solely of plots with an intermediate level of plant α‐diversity support a higher number of arthropod species compared to combinations that contain a mix of high‐ and low‐diversity plots. In fact, equal levels of arthropod diversity were found for six‐plot combinations with only intermediate or high plant α‐diversity, due to saturating benefits of local and larger‐scale plant diversity for higher trophic levels. Our results, alongside those of recent observational studies, strongly suggest that maintaining high α‐diversity in plant communities is important for conserving multiple components of arthropod diversity. As arthropods carry out a range of essential ecosystem functions, such as pollination and natural pest‐control, our findings provide crucial insight for effective planning of human‐dominated landscapes to maximize both ecological and economic benefits in grassland systems. 
    more » « less
  4. Tree plantings have the potential to increase species diversity and sequester carbon, yet planting failure and early mortality pose significant barriers to their success. Biodiversity‐ecosystem function theory suggests that diverse tree plantings could improve survival outcomes through either the portfolio or facilitation effect, yet there remain few tests of this hypothesis. Here, we use a large‐scale tree‐diversity experiment (BiodiversiTREE), with monitoring of nearly 8,000 individual trees to test whether (1) tree species diversity increases survival rates, (2) tree diversity stabilizes the risk of planting failure, and/or (3) diversity effects are important relative to other common drivers of seedling mortality (e.g. herbivory and soil moisture). We found that only species identity significantly impacted the likelihood of survival, not plant functional diversity nor plot species richness nor phylogenetic diversity. There were minor effects of elevation and soil moisture on survival, but both explained a very small amount of variation in the data (r2marg ≤ 0.011). Higher tree diversity did, however, strongly reduce variation in survival across plots, with nearly 2‐fold higher coefficients of variation in monocultures (30.4%, 28.4–32.6% 95% bootstrapped confidence interval) compared to 4‐ (16.3%, 13.8–18.7%) and 12‐species plots (12.8%, 10.8–14.7%). Ultimately, our results suggest that employing diverse species can lower the risk of planting failure (i.e. the portfolio effect), but that species selection still plays a large role in early establishment. 
    more » « less
  5. The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long-term experiment. We quantified AMF root colonization, AMF extra-radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant-parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant-parasitic nematode (PPN) abundance was 2.3 ×  higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems. 
    more » « less