We report an empirical analysis of the hydrologic response of three small, highly impervious urban watersheds to pulse rainfall events, to assess how traditional stormwater management (SWM) alters urban hydrographs. The watersheds vary in SWM coverage from 3% to 61% and in impervious cover from 45% to 67%. By selecting a set of storm events that involved a single rainfall pulse with >96% of total precipitation delivered in 60 min, we reduced the effect of differences between storms on hydrograph response to isolate characteristic responses attributable to watershed properties. Watershed‐average radar rainfall data were used to generate local storm hyetographs for each event in each watershed, thus compensating for the extreme spatial and temporal heterogeneity of short‐duration, intense rainfall events. By normalizing discharge values to the discharge peak and centring each hydrograph on the time of peak we were able to visualize the envelope of hydrographs for each group and to generate representative composite hydrographs for comparison across the three watersheds. Despite dramatic differences in the fraction of watershed area draining to SWM features across these three headwater tributaries, we did not find strong evidence that SWM causes significant attenuation of the hydrograph peak. Hydrograph response for the three watersheds is remarkably uniform despite contrasts in SWM, impervious cover and spatial patterns of land cover type. The primary difference in hydrograph response is observed on the recession limb of the hydrograph, and that change appears to be associated with higher storm‐total runoff in the watersheds with more area draining to SWM. Our findings contribute more evidence to the work of previous authors suggesting that SWM is less effective at attenuating urban hydrographs than is commonly assumed. Our findings also are consistent with previous work concluding that percent impervious cover may have greater influence on runoff volume than percent SWM coverage.
Storm direction modulates a hydrograph's magnitude and duration, thus having a potentially large effect on local flood risk. However, how changes in the preferential storm direction affect the probability distribution of peak flows remains unknown. We address this question with a novel Monte Carlo approach where stochastically transposed storms drive hydrologic simulations over medium and mesoscale watersheds in the Midwestern United States. Systematic rotations of these watersheds are used to emulate changes in the preferential storm direction. We found that the peak flow distribution impacts are scale‐dependent, with larger changes observed in the mesoscale watershed than in the medium‐scale watershed. We attribute this to the high diversity of storm patterns and the storms' scale relative to watershed size. This study highlights the potential of the proposed stochastic framework to address fundamental questions about hydrologic extremes when our ability to observe these events in nature is hindered by technical constraints and short time records.
more » « less- NSF-PAR ID:
- 10391704
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 9
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.
-
Abstract Decades of research has concluded that the percent of impervious surface cover in a watershed is strongly linked to negative impacts on urban stream health. Recently, there has been a push by municipalities to offset these effects by installing structural stormwater control measures (SCMs), which are landscape features designed to retain and reduce runoff to mitigate the effects of urbanisation on event hydrology. The goal of this study is to build generalisable relationships between the level of SCM implementation in urban watersheds and resulting changes to hydrology. A literature review of 185 peer‐reviewed studies of watershed‐scale SCM implementation across the globe was used to identify 52 modelling studies suitable for a meta‐analysis to build statistical relationships between SCM implementation and hydrologic change. Hydrologic change is quantified as the percent reduction in storm event runoff volume and peak flow between a watershed with SCMs relative to a (near) identical control watershed without SCMs. Results show that for each additional 1% of SCM‐mitigated impervious area in a watershed, there is an additional 0.43% reduction in runoff and a 0.60% reduction in peak flow. Values of SCM implementation required to produce a change in water quantity metrics were identified at varying levels of probability. For example, there is a 90% probability (high confidence) of at least a 1% reduction in peak flow with mitigation of 33% of impervious surfaces. However, as the reduction target increases or mitigated impervious surface decreases, the probability of reaching the reduction target also decreases. These relationships can be used by managers to plan SCM implementation at the watershed scale.
-
Abstract Watershed studies often rely on the assumption that interannual storage changes are negligible in the hydrologic balance of a watershed. The assumption can be useful and is sometimes necessary, but it is widely acknowledged as unrealistic. Identifying and understanding systematic deviations from hydrologic steady state has important implications for both hydrologic research and water management. To that end, we evaluated the magnitude of interannual changes in storage for nearly 1000 watersheds in the conterminous United States for the 10‐year period 2002 to 2011 using ground‐based and remotely sensed data. We evaluated relationships between changes in storage (i.e., deviations from hydrologic steady state), vegetation cover, and hydroclimatic variables. Analysis of results using a Budyko framework revealed that, in general, greater evaporative partitioning led to smaller deviations from hydrologic steady state. Additional analysis using gradient boosted regression tree modeling identified an inverse relationship between forest cover and the magnitude of deviations from hydrologic steady state. In fact, modeling showed forest cover to be a stronger driver of variability in deviations from steady state than any hydroclimatic variable. We discuss ecohydrological feedbacks capable of contributing to steady‐state conditions in forested watersheds, and we discuss implications of these results for the coevolution of watersheds, vegetation, and climate.
-
The structure and evolution of flash flood–producing storms over a small urban watershed in the mid-Atlantic United States with a prototypical flash flood response is examined. Lagrangian storm properties are investigated through analyses of the 32 storms that produced the largest peak discharges in Moores Run between January 2000 and May 2014. The Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) algorithm is used to track storm characteristics over their life cycle with a focus on storm size, movement, intensity, and location. First, the 13 June 2003 and 1 June 2006 storms, which produced the two largest peak discharges for the study period, are analyzed. Heavy rainfall for the 13 June 2003 and 1 June 2006 storms were caused by a collapsing thunderstorm cell and a slow-moving, low-echo centroid storm. Analyses of the 32 storms show that collapsing storm cells play an important role in peak rainfall rate production and flash flooding. Storm motion is predominantly southwest-to-northeast, and approximately half of the storms exhibited some linear organization. Mean storm total rainfall for the 32 storms displayed an asymmetric distribution around Moores Run, with sharply decreasing gradients southwest of the watershed (upwind and into the city) and increased rainfall to the northeast (downwind and away from the city). Results indicate urban modification of rainfall in flash flood–producing storms. There was no evidence that the storms split around Baltimore. Flood-producing rainfall was highly concentrated in time; on average, approximately 21% of the storm total rainfall fell within 15 min.more » « less