skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fatty acid amide hydrolase and 9-lipoxygenase modulate cotton seedling growth by ethanolamide oxylipin levels
Abstract Polyunsaturated N-acylethanolamines (NAEs) can be hydrolyzed by fatty acid amide hydrolase (FAAH) or oxidized by lipoxygenase (LOX). In Arabidopsis (Arabidopsis thaliana), the 9-LOX product of linoleoylethanolamide, namely, 9-hydroxy linoleoylethanolamide (9-NAE-HOD), is reported to negatively regulate seedling development during secondary dormancy. In upland cotton (Gossypium hirsutum L.), six putative FAAH genes (from two diverged groups) and six potential 9-LOX genes are present; however, their involvement in 9-NAE-HOD metabolism and its regulation of seedling development remain unexplored. Here, we report that in cotton plants, two specific FAAH isoforms (GhFAAH Ib and GhFAAH IIb) are needed for hydrolysis of certain endogenous NAEs. Virus-induced gene silencing (VIGS) of either or both FAAHs led to reduced seedling growth and this coincided with reduced amidohydrolase activities and elevated quantities of endogenous 9-NAE-HOD. Transcripts of GhLOX21 were consistently elevated in FAAH-silenced tissues, and co-silencing of GhLOX21 and GhFAAH (Ib and/or IIb) led to reversal of seedling growth to normal levels (comparable with no silencing). This was concomitant with reductions in the levels of 9-NAE-HOD, but not of 13-NAE-HOD. Pharmacological experiments corroborated the genetic and biochemical evidence, demonstrating that direct application of 9-NAE-HOD, but not 13-NAE-HOD or their corresponding free fatty acid oxylipins, inhibited the growth of cotton seedlings. Additionally, VIGS of GhLOX21 in cotton lines overexpressing AtFAAH exhibited enhanced growth and no detectable 9-NAE-HOD. Altogether, we conclude that the growth of cotton seedlings involves fine-tuning of 9-NAE-HOD levels via FAAH-mediated hydrolysis and LOX-mediated production, expanding the mechanistic understanding of plant growth modulation by NAE oxylipins to a perennial crop species.  more » « less
Award ID(s):
2051636
PAR ID:
10391710
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant Physiology
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fatty acid amide hydrolase (FAAH) is a conserved amidase that is known to modulate the levels of endogenousN‐acylethanolamines (NAEs) in both plants and animals. The activity of FAAH is enhancedin vitroby synthetic phenoxyacylethanolamides resulting in greater hydrolysis of NAEs. Previously, 3‐n‐pentadecylphenolethanolamide (PDP‐EA) was shown to exert positive effects on the development of Arabidopsis seedlings by enhancing Arabidopsis FAAH (AtFAAH) activity. However, there is little information regarding FAAH activity and the impact of PDP‐EA in the development of seedlings of other plant species. Here, we examined the effects of PDP‐EA on growth of upland cotton (Gossypium hirsutumL. cv Coker 312) seedlings including two lines of transgenic seedlings overexpressingAtFAAH. Independent transgenic events showed accelerated true‐leaf emergence compared with non‐transgenic controls. Exogenous applications of PDP‐EA led to increases in overall seedling growth in AtFAAH transgenic lines. These enhanced‐growth phenotypes coincided with elevated FAAH activities toward NAEs and NAE oxylipins. Conversely, the endogenous contents of NAEs and NAE‐oxylipin species, especially linoleoylethanolamide and 9‐hydroxy linoleoylethanolamide, were lower in PDP‐EA treated seedlings than in controls. Further, transcripts for endogenous cottonFAAHgenes were increased following PDP‐EA exposure. Collectively, our data corroborate that the enhancement of FAAH enzyme activity by PDP‐EA stimulates NAE‐hydrolysis and that this results in enhanced growth in seedlings of a perennial crop species, extending the role of NAE metabolism in seedling development beyond the model annual plant species,Arabidopsis thaliana. 
    more » « less
  2. Rebeille, F.; Marechal, E. (Ed.)
    N-acylethanolamines (NAEs) are a group of lipid signaling molecules derived from the phospholipid precursor N-acylphosphatidylethanolamine (NAPE). NAEs can be processed by a wide range of metabolic processes including hydrolysis by fatty acid amide hydrolase (FAAH), peroxidation by lipoxygenases (LOX), and conjugation by glycosyl- and malonyl-transferases. The diversity of NAE metabolites points to participation in multiple downstream pathways for regulation and function. NAEs with acyl chains of 18C are typically the most predominant types in vascular plants. Whereas in nonvascular plants and some algae, the arachidonic acid-containing NAE, anandamide (a functional “endocannabinoid” in animal systems), was recently reported. A signaling role for anandamide and other NAEs is well established in vertebrates, while NAEs and their oxylipin metabolites are recently becoming appreciated for lipid mediator roles in vascular plants. Here, the NAE metabolism and function in plants are overviewed, with particular emphasis on processes described in vascular plants where most attention has been focused. 
    more » « less
  3. Fatty acid amide hydrolase (FAAH) is a conserved hydrolase in eukaryotes with promiscuous activity toward a range of acylamide substrates. The native substrate repertoire for FAAH has just begun to be explored in plant systems outside the modelArabidopsis thaliana. Here, we usedex vivolipidomics to identify potential endogenous substrates forMedicago truncatulaFAAH1 (MtFAAH1). We incubated recombinant MtFAAH1 with lipid mixtures extracted fromM. truncatulaand resolved their profiles via gas chromatography–mass spectrometry (GC–MS). Data revealed that besidesN‐acylethanolamines (NAEs),sn‐1orsn‐2isomers of monoacylglycerols (MAGs) were substrates for MtFAAH1. Combined within vitroand computational approaches, our data support both amidase and esterase activities for MtFAAH1. MAG‐mediated hydrolysis via MtFAAH1 may be linked to biological roles that are yet to be discovered. 
    more » « less
  4. Lauritano, Chiara; Ianora, Adrianna (Ed.)
    Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host–virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host–virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects. 
    more » « less
  5. Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes in Zea mays (maize). Here, we show that SCMV can also be applied for virus-induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maize phytoene desaturase (PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targeting PDS, lesion mimic 22 (Les22), and Iodent japonica 1 (Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression of Les22 and Ij1 was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate-isoleucine (JA-Ile) can be inactivated by 12C-hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA-Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, and Nicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression of ZmCYP94B1 (predicted JA-Ile hydroxylase) and ZmJIH1 (predicted JA-Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense-related genes, Maize Proteinase Inhibitor (MPI) and Ribosome Inactivating Protein 2 (RIP2). Although ZmCYP94B1 and ZmJIH1 gene expression silencing increased resistance to Spodoptera frugiperda (fall armyworm), Schistocerca americana (American birdwing grasshopper), and Rhopalosiphum maidis (corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses. 
    more » « less