ABSTRACT The detection of many complex organic molecules (COMs) in interstellar space has sparked the study of their origins. While the formation of COMs detected in hot cores is attributed to photochemistry on warming grain surfaces followed by recombination of radicals and desorption, the formation routes in colder regions are still a debated issue with a number of theories such as cosmic ray bombardment on interstellar ice mantles or non-diffusive surface chemistry. Here, we present another method with reactions involving metastable atomic oxygen in the O(1D) state, which is initially produced by photodissociation of oxygen-containing species in interstellar ices. As a first example, we study the reactions of metastable oxygen atoms and methane in ices to form both formaldehyde and methanol. The reaction is studied incorporating two different surface processes: diffusive and non-diffusive chemistry. The formation of methanol and formaldehyde via metastable oxygen atoms is compared with well-known formation routes of both to understand the O(1D) contributions at different temperatures. 
                        more » 
                        « less   
                    
                            
                            Metastable insertion reactions on interstellar ices
                        
                    
    
            ABSTRACT The formation of complex organic molecules (COMs) in interstellar conditions is influenced by several different processes occurring both in the gas and solid phases. Here we perform an extension of previous work to understand the influence of electronically excited metastable species on condensed phase COM formation via insertion-type reactions. These reactions involve the insertion of a chemical entity on a previously existing chemical bond. Such insertion processes involving a metastable species allow for rapid reactions with the surrounding grain ice in the absence of activation energy or diffusion barriers even under cold, dark cloud conditions. In this paper, the production of a number of interstellar species including COMs in cold dark clouds is treated both via the metastable process as well as existing suggested pathways such as radical recombination and hydrogenation of unsaturated species in order to gain insight about the relative importance of the newly added process. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1906489
- PAR ID:
- 10391718
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 519
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 4622-4631
- Size(s):
- p. 4622-4631
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT In the interstellar medium (ISM), the formation of complex organic molecules (COMs) is largely facilitated by surface reactions. However, in cold dark clouds, thermal desorption of COMs is inefficient because of the lack of thermal energy to overcome binding energies to the grain surface. Non-thermal desorption methods are therefore important explanations for the gas-phase detection of many COMs that are primarily formed on grains. Here, we present a new non-thermal desorption process: cosmic ray sputtering of grain ice surfaces based on water, carbon dioxide, and a simple mixed ice. Our model applies estimated rates of sputtering to the three-phase rate equation model nautilus-1.1, where this inclusion results in enhanced gas-phase abundances for molecules produced by grain reactions such as methanol (CH3OH) and methyl formate (HCOOCH3). Notably, species with efficient gas-phase destruction pathways exhibit less of an increase in models with sputtering compared to other molecules. These model results suggest that sputtering is an efficient, non-specific method of non-thermal desorption that should be considered as an important factor in future chemical models.more » « less
- 
            ABSTRACT Determining the level of chemical complexity within dense starless and gravitationally bound pre-stellar cores is crucial for constructing chemical models, which subsequently constrain the initial chemical conditions of star formation. We have searched for complex organic molecules (COMs) in the young starless core L1521E, and report the first clear detection of dimethyl ether (CH3OCH3), methyl formate (HCOOCH3), and vinyl cyanide (CH2CHCN). Eight transitions of acetaldehyde (CH3CHO) were also detected, five of which (A states) were used to determine an excitation temperature to then calculate column densities for the other oxygen-bearing COMs. If source size was not taken into account (i.e. if filling fraction was assumed to be one), column density was underestimated, and thus we stress the need for higher resolution mapping data. We calculated L1521E COM abundances and compared them to other stages of low-mass star formation, also finding similarities to other starless/pre-stellar cores, suggesting related chemical evolution. The scenario that assumes formation of COMs in gas-phase reactions between precursors formed on grains and then ejected to the cold gas via reactive desorption was tested and was unable to reproduce observed COM abundances, with the exception of CH3CHO. These results suggest that COMs observed in cold gas are formed not by gas-phase reactions alone, but also through surface reactions on interstellar grains. Our observations present a new, unique challenge for existing theoretical astrochemical models.more » « less
- 
            null (Ed.)ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.more » « less
- 
            Abstract Carbonyl-bearing complex organic molecules (COMs) in the interstellar medium (ISM) are of significant importance due to their role as potential precursors to biomolecules. Simple aldehydes and ketones like acetaldehyde, acetone, and propanal have been recognized as fundamental molecular building blocks and tracers of chemical processes involved in the formation of distinct COMs in molecular clouds and star-forming regions. Although previous laboratory simulation experiments and modeling established the potential formation pathways of interstellar acetaldehyde and propanal, the underlying formation routes to the simplest ketone—acetone—in the ISM are still elusive. Herein, we performed a systematic study to unravel the synthesis of acetone, its propanal and propylene oxide isomers, as well as the propenol tautomers in interstellar analog ices composed of methane and acetaldehyde along with isotopic-substitution studies to trace the reaction pathways of the reactive intermediates. Chemical processes in the ices were triggered at 5.0 K upon exposure to proxies of Galactic cosmic rays in the form of energetic electrons. The products were detected isomer-selectively via vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry. In our experiments, the branching ratio of acetone (CH3COCH3):propylene oxide (c-CH3CHOCH2):propanal (CH3CH2CHO) was determined to be (4.82 ± 0.05):(2.86 ± 0.13):1. The radical–radical recombination reaction leading to acetone emerged as the dominant channel. The propenols appeared only at a higher radiation dose via keto–enol tautomerization. The current study provides mechanistic information on the fundamental nonequilibrium pathways that may be responsible for the formation of acetone and its (enol) isomers inside the interstellar icy grains.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
