The mixed Lp-norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simulta- neous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed Lp-norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.
more »
« less
A machine learning approach to joint gravity and cosmic-ray muon inversion at Mt Usu, Japan
SUMMARY The ability to accurately and reliably obtain images of shallow subsurface anomalies within the Earth is important for hazard monitoring and a fundamental understanding of many geologic structures, such as volcanic edifices. In recent years, machine learning (ML) has gained increasing attention as a novel approach for addressing complex problems in the geosciences. Here we present an ML-based inversion method to integrate cosmic-ray muon and gravity data sets for shallow subsurface density imaging at a volcano. Starting with an ensemble of random density anomalies, we use physics-based forward calculations to find the corresponding set of expected gravity and muon attenuation observations. Given a large enough ensemble of synthetic density patterns and observations, the ML algorithm is trained to recognize the expected spatial relations within the synthetic input–output pairs, learning the inherent physical relationships between them. Once trained, the ML algorithm can then interpolate the best-fitting anomalous pattern given data that were not used in training, such as those obtained from field measurements. We test the validity of our ML algorithm using field data from the Showa-Shinzan lava dome (Mt Usu, Japan) and show that our model produces results consistent with those obtained using a more traditional Bayesian joint inversion. Our results are similar to the previously published inversion, and suggest that the Showa-Shinzan lava dome consists of a relatively high-density (2200–2400 km m–3) cylindrical anomaly, about 300 m in diameter. Adding noise to synthetic training and testing data sets shows that, as expected, the ML algorithm is most robust in areas of high sensitivity, as determined by the forward kernels. Overall, we discover that ML offers a viable alternate method to a Bayesian joint inversion when used with gravity and muon data sets for subsurface density imaging.
more »
« less
- Award ID(s):
- 2120812
- PAR ID:
- 10391769
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 233
- Issue:
- 2
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 1081-1096
- Size(s):
- p. 1081-1096
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Within the iron metallogenic province of southeast Missouri, USA, there are several mines that contain not only economic iron resources, magnetite and/or hematite, but also contain rare earth elements, copper and gold. An area including three major deposits, Pea Ridge, Bourbon and Kratz Spring, was selected for detailed modelling for the upper crustal magnetic susceptibility and density structures. For the study area, ground gravity and high-resolution airborne magnetic and gravity gradiometry data sets are available. An efficient and novel joint inversion algorithm for the simultaneous inversion of these multiple data sets is presented. The Gramian coupling constraint is used to correlate the reconstructed density and magnetic susceptibility models. The implementation relies on the structures of the sensitivity matrices and an efficient minimization algorithm to achieve significant reductions in the memory requirements and computational costs. Consequently, it is feasible to use a laptop computer for the inversion of multiple data sets, each containing thousands of data points, for the recovery of models on the study area, each including approximately one million model parameters. This is the first time that these multiple data sets have been simultaneously inverted for this area. The L1-norm stabilizer is used to provide compact and focused images of the ore deposits. For contrast, independent inversions of each data set are also discussed. In general, our results provide new insights about the concealed ore deposits in the Mesoproterozoic basement rocks of southeast Missouri. Both short- and long-wavelength anomalies exist in the recovered models; these provide a high-resolution image of the subsurface. The geometry and physical properties of the known deposits are determined very well. Additionally, some unknown concealed deposits are revealed; these could be economically valuable and should be considered in future geophysical and geological investigations.more » « less
-
The recent identification of unrest at multiple volcanoes that have not erupted in over 10 kyr presents an intriguing scientific problem. How can we distinguish between unrest signaling impending eruption after kyr of repose and non-magmatic unrest at a waning volcanic system? After ca. 250 kyr without a known eruption, in recent decades Uturuncu volcano in Bolivia has exhibited multiple signs of unrest, making the classification of this system as “active”, “dormant”, or “extinct” a complex question. Previous work identified anomalous low resistivity zones at <10 km depth with ambiguous interpretations. We investigate subsurface structure at Uturuncu with new gravity data and analysis, and compare these data with existing geophysical data sets. We collected new gravity data on the edifice in November 2018 with 1.5 km spacing, ±15 μ Gal precision, and ±5 cm positioning precision, improving the resolution of existing gravity data at Uturuncu. This high quality data set permitted both gradient analysis and full 3-D geophysical inversion, revealing a 5 km diameter, positive density anomaly beneath the summit of Uturuncu (1.5–3.5 km depth) and a 20 km diameter arc-shaped negative density anomaly around the volcano (0.5–7.5 depth). These structures often align with resistivity anomalies previously detected beneath Uturuncu, although the relationship is complex, with the two models highlighting different components of a common structure. Based on a joint analysis of the density and resistivity models, we interpret the positive density anomaly as a zone of sulfide deposition with connected brines, and the negative density arc as a surrounding zone of hydrothermal alteration. Based on this analysis we suggest that the unrest at Uturuncu is unlikely to be pre-eruptive. This study shows the value of joint analysis of multiple types of geophysical data in evaluating volcanic subsurface structure at a waning volcanic center.more » « less
-
null (Ed.)SUMMARY We discuss the focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid. For the uniform grid, the model sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are provided to show that the implementation of the focusing inversion algorithm using the fast Fourier transform is efficient, and that the algorithm can be realized on standard desktop computers with sufficient memory for storage of volumes up to size n ≈ 106. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub–Kahan bidiagonalization or randomized singular value decomposition algorithms. These two algorithms are contrasted for their efficiency when used to solve large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size approximately m/8. For the inversion of magnetic data sets, we show that it is more efficient to use the Golub–Kahan bidiagonalization, and that it is again sufficient to use projected spaces of size approximately m/8. Simulations support the presented conclusions and are verified for the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba, Canada.more » « less
-
Despite progress in tomographic imaging of Earth’s interior, a number of critical questions regarding the large-scale structure and dynamics of the mantle remain outstanding. One of those questions is the impact of phase-boundary undulations on global imaging of mantle heterogeneity and on geodynamic (i.e. convection-related) observables. To address this issue, we developed a joint seismic-geodynamic-mineral physical tomographic inversion procedure that incorporates lateral variations in the depths of the 410- and 660-km discontinuities. This inversion includes S-wave traveltimes, SS precursors that are sensitive to transition-zone topography, geodynamic observables/data (free-air gravity, dynamic surface topography, horizontal divergence of tectonic plates and excess core-mantle boundary ellipticity) and mineral physical constraints on thermal heterogeneity. Compared to joint tomography models that do not include data sensitivity to phase-boundary undulations in the transition zone, the inclusion of 410- and 660-km topography strongly influences the inference of volumetric anomalies in a depth interval that encompasses the transition zone and mid-mantle. It is notable that joint tomography inversions, which include constraints on transition-zone discontinuity topography by seismic and geodynamic data, yield more pronounced density anomalies associated with subduction zones and hotspots. We also find that the inclusion of 410- and 660-km topography may improve the fit to the geodynamic observables, depending on the weights applied to seismic and geodynamic data in the inversions. As a consequence, we find that the amplitude of non-thermal density anomalies required to explain the geodynamic data decreases in most of the mantle. These findings underline the sensitivity of the joint inversions to the inclusion of transition-zone complexity (e.g. phase-boundary topography) and the implications for the inferred non-thermal density anomalies in these depth regions. Finally, we underline that our inferences of 410- and 660-km topography avoid a commonly employed approximation that represents the contribution of volumetric heterogeneity to SS-wave precursor data. Our results suggest that this previously employed correction, based on a priori estimates of uppermantle heterogeneity, might be a significant source of error in estimating the 410- and 660-km topography.more » « less
An official website of the United States government
