skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Performance Photocatalytic Reduction of Nitrogen to Ammonia Driven by Oxygen Vacancy and Ferroelectric Polarization Field of SrBi 4 Ti 4 O 15 Nanosheets
Abstract Photo‐responsive semiconductors can facilitate nitrogen activation and ammonia production, but the high recombination rate of photogenerated carriers represents a significant barrier. Ferroelectric photocatalysts show great promise in overcoming this challenge. Herein, by adopting a low‐temperature hydrothermal procedure with varying concentrations of glyoxal as the reducing agent, oxygen vacancies (Vo) are effectively produced on the surface of ferroelectric SrBi4Ti4O15(SBTO) nanosheets, which leads to a considerable increase in photocatalytic activity toward nitrogen fixation under simulated solar light with an ammonia production rate of 53.41 µmol g−1h−1, without the need of sacrificial agents or photosensitizers. This is ascribed to oxygen vacancies that markedly enhance the self‐polarization and internal electric field of ferroelectric SBTO, and hence, facilitate the separation of photogenerated charge carriers and light trapping as well as N2adsorption and activation, as compared to pristine SBTO. Consistent results are obtained in theoretical studies. Results from this study highlight the significance of surface oxygen vacancies in enhancing the performance of photocatalytic nitrogen fixation by ferroelectric catalysts.  more » « less
Award ID(s):
1848841
PAR ID:
10391774
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
19
Issue:
3
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric nitrogen fixation using a photocatalytic system is a promising approach to produce ammonia. However, most of the recently explored photocatalysts for N 2 fixation are in the powder form, suffering from agglomeration and difficulty in the collection and leading to unsatisfactory conversion efficiency. Developing efficient film catalysts for N 2 photofixation under ambient conditions remains challenging. Herein, we report the efficient photofixation of N 2 over a periodic WS 2 @TiO 2 nanoporous film, which is fabricated through a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). Oxygen vacancies are introduced into TiO 2 nanoporous films through Ar annealing treatment, which plays a vital role in N 2 adsorption and activation. The periodic WS 2 @TiO 2 nanoporous film with an optimized WS 2 content shows highly efficient photocatalytic performance for N 2 fixation with an NH 3 evolution rate of 1.39 mmol g −1 h −1 , representing one of the state-of-the-art catalysts. 
    more » « less
  2. Abstract Photocatalytic nitrogen fixation has the potential to provide a greener route for producing nitrogen‐based fertilizers under ambient conditions. Computational screening is a promising route to discover new materials for the nitrogen fixation process, but requires identifying “descriptors” that can be efficiently computed. In this work, we argue that selectivity toward the adsorption of molecular nitrogen and oxygen can act as a key descriptor. A catalyst that can selectively adsorb nitrogen and resist poisoning of oxygen and other molecules present in air has the potential to facilitate the nitrogen fixation process under ambient conditions. We provide a framework for active site screening based on multifidelity density functional theory (DFT) calculations for a range of metal oxides, oxyborides, and oxyphosphides. The screening methodology consists of initial low‐fidelity fixed geometry calculations and a second screening in which more expensive geometry optimizations were performed. The approach identifies promising active sites on several TiO2polymorph surfaces and a VBO4surface, and the full nitrogen reduction pathway is studied with the BEEF‐vdW and HSE06 functionals on two active sites. The findings suggest that metastable TiO2polymorphs may play a role in photocatalytic nitrogen fixation, and that VBO4may be an interesting material for further studies. 
    more » « less
  3. Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 . 
    more » « less
  4. Abstract Determining suitable dopants with optimized doping concentration is critical to design efficient water splitting photocatalysts. However, there is currently a lack of fundamental knowledge to guide this process. Herein, we examine the impact of Al3+, Mg2+, and Ga3+on the photocatalytic performance of SrTiO3and propose a defect compensation model to understand the doping effect. Doped SrTiO3crystals were grown hydrothermally and treated in molten SrCl2. The hydrogen production rates from 50 catalysts produced in this way were measured with a high‐throughput parallelized and automated photochemical reactor (PAPCR). The investigation revealed that all three dopants significantly enhance the photocatalytic reactivity. According to Brouwer diagrams computed using available reaction constants, the optimum reactivity is achieved when the concentration of acceptor dopants fully compensates the oxygen vacancy donors. The improved reactivity can be attributed to the reduction in free electron concentration, resulting in a space charge layer that is 1000 times longer. Consequently, this situation enhances the number of photogenerated charge carriers capable of being separated by the band bending and transported to the surface. 
    more » « less
  5. Abstract Oxygen vacancy is the most common type of point defects in functional oxides, and it is known to have profound influence on their properties. This is particularly true for ferroelectric oxides since their interaction with ferroelectric polarization often dictates the ferroelectric responses. Here, we study the influence of the concentration of oxygen vacancies on the stability of ferroelectric domain walls (DWs) in BiFeO3, a material with a relatively narrow bandgap among all perovskite oxides, which enables strong interactions among electronic charge carriers, oxygen vacancies, and ferroelectric domains. It is found that the electronic charge carriers in the absence of oxygen vacancies have essentially no influence on the spatial polarization distribution of the DWs due to their low concentrations. Upon increasing the concentration of oxygen vacancies, charge‐neutral DWs with an originally symmetric polarization distribution symmetric around the center of the wall can develop a strong asymmetry of the polarization field, which is mediated by the electrostatic interaction between polarization and electrons from the ionization of oxygen vacancies. Strongly charged head‐to‐head DWs that are unstable without oxygen vacancies can be energetically stabilized in the off‐stoichiometric BiFeO3−δwithδ∼ 0.02 where ionization of oxygen vacancies provides sufficient free electrons to compensate the bound charge at the wall. Our results delineate the electrostatic coupling of the ionic defects and the associated free electronic charge carriers with the bound charge in the vicinity of neutral and charged DWs in perovskite ferroelectrics. 
    more » « less