skip to main content


Title: Eye Tracking in Virtual Reality: a Broad Review of Applications and Challenges
Abstract

Eye tracking is becoming increasingly available in head-mounted virtual reality displays with various headsets with integrated eye trackers already commercially available. The applications of eye tracking in virtual reality are highly diversified and span multiple disciplines. As a result, the number of peer-reviewed publications that study eye tracking applications has surged in recent years. We performed a broad review to comprehensively search academic literature databases with the aim of assessing the extent of published research dealing with applications of eye tracking in virtual reality, and highlighting challenges, limitations and areas for future research.

 
more » « less
Award ID(s):
1911041
NSF-PAR ID:
10391818
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Virtual Reality
Volume:
27
Issue:
2
ISSN:
1359-4338
Page Range / eLocation ID:
p. 1481-1505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Eye tracking has become an essential human-machine interaction modality for providing immersive experience in numerous virtual and augmented reality (VR/AR) applications desiring high throughput (e.g., 240 FPS), small-form, and enhanced visual privacy. However, existing eye tracking systems are still limited by their: (1) large form-factor largely due to the adopted bulky lens-based cameras; (2) high communication cost required between the camera and backend processor; and (3) potentially concerned low visual privacy, thus prohibiting their more extensive applications. To this end, we propose, develop, and validate a lensless FlatCambased eye tracking algorithm and accelerator co-design framework dubbed EyeCoD to enable eye tracking systems with a much reduced form-factor and boosted system efficiency without sacrificing the tracking accuracy, paving the way for next-generation eye tracking solutions. On the system level, we advocate the use of lensless FlatCams instead of lens-based cameras to facilitate the small form-factor need in mobile eye tracking systems, which also leaves rooms for a dedicated sensing-processor co-design to reduce the required camera-processor communication latency. On the algorithm level, EyeCoD integrates a predict-then-focus pipeline that first predicts the region-of-interest (ROI) via segmentation and then only focuses on the ROI parts to estimate gaze directions, greatly reducing redundant computations and data movements. On the hardware level, we further develop a dedicated accelerator that (1) integrates a novel workload orchestration between the aforementioned segmentation and gaze estimation models, (2) leverages intra-channel reuse opportunities for depth-wise layers, (3) utilizes input feature-wise partition to save activation memory size, and (4) develops a sequential-write-parallel-read input buffer to alleviate the bandwidth requirement for the activation global buffer. On-silicon measurement and extensive experiments validate that our EyeCoD consistently reduces both the communication and computation costs, leading to an overall system speedup of 10.95×, 3.21×, and 12.85× over general computing platforms including CPUs and GPUs, and a prior-art eye tracking processor called CIS-GEP, respectively, while maintaining the tracking accuracy. Codes are available at https://github.com/RICE-EIC/EyeCoD. 
    more » « less
  2. As eye tracking can reduce the computational burden of virtual reality devices through a technique known as foveated rendering, we believe not only that eye tracking will be implemented in all virtual reality devices, but that eye tracking biometrics will become the standard method of authentication in virtual reality. Thus, we have created a real-time eye movement-driven authentication system for virtual reality devices. In this work, we describe the architecture of the system and provide a specific implementation that is done using the FOVE head-mounted display. We end with an exploration into future topics of research to spur thought and discussion. 
    more » « less
  3. Abstract

    We present GazeBaseVR, a large-scale, longitudinal, binocular eye-tracking (ET) dataset collected at 250 Hz with an ET-enabled virtual-reality (VR) headset. GazeBaseVR comprises 5,020 binocular recordings from a diverse population of 407 college-aged participants. Participants were recorded up to six times each over a 26-month period, each time performing a series of five different ET tasks: (1) a vergence task, (2) a horizontal smooth pursuit task, (3) a video-viewing task, (4) a self-paced reading task, and (5) a random oblique saccade task. Many of these participants have also been recorded for two previously published datasets with different ET devices, and 11 participants were recorded before and after COVID-19 infection and recovery. GazeBaseVR is suitable for a wide range of research on ET data in VR devices, especially eye movement biometrics due to its large population and longitudinal nature. In addition to ET data, additional participant details are provided to enable further research on topics such as fairness.

     
    more » « less
  4. J. Y. C., Chen (Ed.)
    Controlling and standardizing experiments is imperative for quantitative research methods. With the increase in the availability and quantity of low-cost eye-tracking devices, gaze data are considered as an important user input for quantitative analysis in many social science research areas, especially incorporating with virtual reality (VR) and augmented reality (AR) technologies. This poses new challenges in providing a default interface for gaze data in a common method. This paper propose GazeXR, which focuses on designing a general eye-tracking system interfacing two eye-tracking devices and creating a hardware independent virtual environment. We apply GazeXR to the in-class teaching experience analysis use case using external eye-tracking hardware to collect the gaze data for the gaze track analysis. 
    more » « less
  5. null (Ed.)
    Problem-solving focuses on defining and analyzing problems, then finding viable solutions through an iterative process that requires brainstorming and understanding of what is known and what is unknown in the problem space. With rapid changes of economic landscape in the United States, new types of jobs emerge when new industries are created. Employers report that problem-solving is the most important skill they are looking for in job applicants. However, there are major concerns about the lack of problem-solving skills in engineering students. This lack of problem-solving skills calls for an approach to measure and enhance these skills. In this research, we propose to understand and improve problem-solving skills in engineering education by integrating eye-tracking sensing with virtual reality (VR) manufacturing. First, we simulate a manufacturing system in a VR game environment that we call a VR learning factory. The VR learning factory is built in the Unity game engine with the HTC Vive VR system for navigation and motion tracking. The headset is custom-fitted with Tobii eye-tracking technology, allowing the system to identify the coordinates and objects that a user is looking at, at any given time during the simulation. In the environment, engineering students can see through the headset a virtual manufacturing environment composed of a series of workstations and are able to interact with workpieces in the virtual environment. For example, a student can pick up virtual plastic bricks and assemble them together using the wireless controller in hand. Second, engineering students are asked to design and assemble car toys that satisfy predefined customer requirements while minimizing the total cost of production. Third, data-driven models are developed to analyze eye-movement patterns of engineering students. For instance, problem-solving skills are measured by the extent to which the eye-movement patterns of engineering students are similar to the pattern of a subject matter expert (SME), an ideal person who sets the expert criterion for the car toy assembly process. Benchmark experiments are conducted with a comprehensive measure of performance metrics such as cycle time, the number of station switches, weight, price, and quality of car toys. Experimental results show that eye-tracking modeling is efficient and effective to measure problem-solving skills of engineering students. The proposed VR learning factory was integrated into undergraduate manufacturing courses to enhance student learning and problem-solving skills. 
    more » « less