At fixed galaxy stellar mass, there is a clear observational connection between structural asymmetry and offset from the star-forming main sequence, ΔSFMS. Herein, we use the TNG50 simulation to investigate the relative roles of major mergers (stellar mass ratios μ ≥ 0.25), minor (0.1 ≤ μ < 0.25), and mini mergers (0.01 ≤ μ < 0.1) in driving this connection amongst star-forming galaxies (SFGs). We use dust radiative transfer post-processing with SKIRT to make a large, public collection of synthetic Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) images of simulated IllustrisTNG (TNG) galaxies over 0.1 ≤ z ≤ 0.7 with log (M⋆/M⊙) ≥ 9 (∼750 k images). Using their instantaneous star formation rates (SFRs), known merger histories/forecasts, and HSC-SSP asymmetries, we show (1) that TNG50 SFGs qualitatively reproduce the observed trend between ΔSFMS and asymmetry and (2) a strikingly similar trend emerges between ΔSFMS and the time-to-coalescence for mini mergers. Controlling for redshift, stellar mass, environment, and gas fraction, we show that individual mini merger events yield small enhancements in SFRs and asymmetries that are sustained on long time-scales (at least ∼3 Gyr after coalescence, on average) – in contrast to major/minor merger remnants which peak at much greater amplitudes but are consistent with controls only ∼1 Gyr after coalescence. Integrating the boosts in SFRs and asymmetries driven by μ ≥ 0.01 mergers since z = 0.7 in TNG50 SFGs, we show that mini mergers are responsible for (i) 55 per cent of all merger-driven star formation and (ii) 70 per cent of merger-driven asymmetric structure. Due to their relative frequency and prolonged boost time-scales, mini mergers dominate over their minor and major counterparts in driving star formation and asymmetry in SFGs.
Using the TNG50 cosmological simulation and observations from the Kilo-Degree Survey (KiDS), we investigate the connection between galaxy mergers and optical morphology in the local Universe over a wide range of galaxy stellar masses (8.5 ≤ log (M*/M⊙) ≤ 11). To this end, we have generated over 16 000 synthetic images of TNG50 galaxies designed to match KiDS observations, including the effects of dust attenuation and scattering, and used the statmorph code to measure various image-based morphological diagnostics in the r-band for both data sets. Such measurements include the Gini–M20 and concentration–asymmetry–smoothness statistics. Overall, we find good agreement between the optical morphologies of TNG50 and KiDS galaxies, although the former are slightly more concentrated and asymmetric than their observational counterparts. Afterwards, we trained a random forest classifier to identify merging galaxies in the simulation (including major and minor mergers) using the morphological diagnostics as the model features, along with merger statistics from the merger trees as the ground truth. We find that the asymmetry statistic exhibits the highest feature importance of all the morphological parameters considered. Thus, the performance of our algorithm is comparable to that of the more traditional method of selecting highly asymmetric galaxies. Finally, using our trained model, we estimate the galaxy merger fraction in both our synthetic and observational galaxy samples, finding in both cases that the galaxy merger fraction increases steadily as a function of stellar mass.
more » « less- PAR ID:
- 10391824
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 519
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 4920-4937
- Size(s):
- p. 4920-4937
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract We investigate the role of galaxy mergers in triggering active galactic nuclei (AGN) in the nearby universe. Our analysis is based on a sample of 79 post-merger remnant galaxies with deep X-ray observations from Chandra/XMM-Newton capable of detecting a low-luminosity AGN of ≥1040.5erg s−1. This sample is derived from a visually classified, volume-limited sample of 807 post-mergers identified in the Sloan Digital Sky Survey Data Release 14 with log
M */M ⊙≥ 10.5 and 0.02 ≤z ≤ 0.06. We find that the X-ray AGN fraction in this sample is 55.7% ± 5.6% compared to 23.6% ± 2.8% for a mass- and redshift-matched noninteracting control sample. The multiwavelength AGN fraction (identified as an AGN in one of X-ray, IR, radio or optical diagnostics) for post-mergers is 76.6% ± 4.8% compared to 39.1% ± 3.2% for controls. Thus post-mergers exhibit a high overall AGN fraction with an excess between 2 and 4 depending on the AGN diagnostics used. In addition, we find most optical, IR, and radio AGN are also identified as X-ray AGN while a large fraction of X-ray AGN are not identified in any other diagnostic. This highlights the importance of deep X-ray imaging to identify AGN. We find that the X-ray AGN fraction of post-mergers is independent of the stellar mass above logM */M ⊙≥ 10.5 unlike the trend seen in control galaxies. Overall, our results show that post-merger galaxies are a good tracer of the merger–AGN connection and strongly support the theoretical expectations that mergers trigger AGN. -
Abstract The majority of massive star-forming galaxies at
z ∼ 2 have velocity gradients suggestive of rotation, in addition to large amounts of disordered motions. In this paper, we demonstrate that it is challenging to distinguish the regular rotation of a disk galaxy from the orbital motions of merging galaxies with seeing-limited data. However, the merger fractions atz ∼ 2 are likely too low for this to have a large effect on measurements of disk fractions. To determine how often mergers pass for disks, we look to galaxy formation simulations. We analyze ∼24,000 synthetic images and kinematic maps of 31 high-resolution simulations of isolated galaxies and mergers atz ∼ 2. We determine if the synthetic observations pass the criteria commonly used to identify disk galaxies and whether the results are consistent with their intrinsic dynamical states. Galaxies that are intrinsically mergers pass the disk criteria for anywhere from 0% to 100% of sightlines. The exact percentage depends strongly on the specific disk criteria adopted and weakly on the separation of the merging galaxies. Therefore, one cannot tell with certainty whether observations of an individual galaxy indicate a merger or a disk. To estimate the fraction of mergers passing as disks in current kinematics samples, we combine the probability that a merger will pass as a disk with theoretical merger fractions from a cosmological simulation. Taking the latter at face value, the observed disk fractions are overestimated by small amounts: at most by 5% at high stellar mass (1010–11M ⊙) and 15% at low stellar mass (109–10M ⊙). -
ABSTRACT Galaxy mergers are crucial to understanding galaxy evolution, therefore we must determine their observational signatures to select them from large IFU galaxy samples such as MUSE and SAMI. We employ 24 high-resolution idealized hydrodynamical galaxy merger simulations based on the ‘Feedback In Realistic Environment’ (FIRE-2) model to determine the observability of mergers to various configurations and stages using synthetic images and velocity maps. Our mergers cover a range of orbital configurations at fixed 1:2.5 stellar mass ratio for two gas rich spirals at low redshift. Morphological and kinematic asymmetries are computed for synthetic images and velocity maps spanning each interaction. We divide the interaction sequence into three: (1) the pair phase; (2) the merging phase; and (3) the post-coalescence phase. We correctly identify mergers between first pericentre passage and 500 Myr after coalescence using kinematic asymmetry with 66 per cent completeness, depending upon merger phase and the field of view of the observation. We detect fewer mergers in the pair phase (40 per cent) and many more in the merging and post-coalescence phases (97 per cent). We find that merger detectability decreases with field of view, except in retrograde mergers, where centrally concentrated asymmetric kinematic features enhances their detectability. Using a cut-off derived from a combination of photometric and kinematic asymmetry, we increase these detections to 89 per cent overall, 79 per cent in pairs, and close to 100 per cent in the merging and post-coalescent phases. By using this combined asymmetry cut-off we mitigate some of the effects caused by smaller fields of view subtended by massively multiplexed integral field spectroscopy programmes.
-
ABSTRACT Recent observational and theoretical studies have suggested that supermassive black holes (SMBHs) grow mostly through non-merger (‘secular’) processes. Since galaxy mergers lead to dynamical bulge growth, the only way to observationally isolate non-merger growth is to study galaxies with low bulge-to-total mass ratio (e.g. $B/T\lt 10~{{\ \rm per\ cent}}$). However, bulge growth can also occur due to secular processes, such as disc instabilities, making disc-dominated selections a somewhat incomplete way to select merger-free systems. Here we use the Horizon-AGN simulation to select simulated galaxies which have not undergone a merger since z = 2, regardless of bulge mass, and investigate their location on typical black hole-galaxy scaling relations in comparison to galaxies with merger dominated histories. While the existence of these correlations has long been interpreted as co-evolution of galaxies and their SMBHs driven by galaxy mergers, we show here that they persist even in the absence of mergers. We find that the correlations between SMBH mass and both total mass and stellar velocity dispersion are independent of B/T ratio for both merger-free and merger-dominated galaxies. In addition, the bulge mass and SMBH mass correlation is still apparent for merger-free galaxies, the intercept for which is dependent on B/T. Galaxy mergers reduce the scatter around the scaling relations, with merger-free systems showing broader scatter. We show that for merger-free galaxies, the co-evolution is dominated by radio-mode feedback, and suggest that the long periods of time between galaxy mergers make an important contribution to the co-evolution between galaxies and SMBHs in all galaxies.