- Award ID(s):
- 2039324
- NSF-PAR ID:
- 10391857
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Wood, V
- Date Published:
- Journal Name:
- Genetics
- Volume:
- 220
- Issue:
- 4
- ISSN:
- 1943-2631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Background Identification of genes responsible for anatomical entities is a major requirement in many fields including developmental biology, medicine, and agriculture. Current wet lab techniques used for this purpose, such as gene knockout, are high in resource and time consumption. Protein–protein interaction (PPI) networks are frequently used to predict disease genes for humans and gene candidates for molecular functions, but they are rarely used to predict genes for anatomical entities. Moreover, PPI networks suffer from network quality issues, which can be a limitation for their usage in predicting candidate genes. Therefore, we developed an integrative framework to improve the candidate gene prediction accuracy for anatomical entities by combining existing experimental knowledge about gene-anatomical entity relationships with PPI networks using anatomy ontology annotations. We hypothesized that this integration improves the quality of the PPI networks by reducing the number of false positive and false negative interactions and is better optimized to predict candidate genes for anatomical entities. We used existing Uberon anatomical entity annotations for zebrafish and mouse genes to construct gene networks by calculating semantic similarity between the genes. These anatomy-based gene networks were semantic networks, as they were constructed based on the anatomy ontology annotations that were obtained from the experimental data in the literature. We integrated these anatomy-based gene networks with mouse and zebrafish PPI networks retrieved from the STRING database and compared the performance of their network-based candidate gene predictions. Results According to evaluations of candidate gene prediction performance tested under four different semantic similarity calculation methods (Lin, Resnik, Schlicker, and Wang), the integrated networks, which were semantically improved PPI networks, showed better performances by having higher area under the curve values for receiver operating characteristic and precision-recall curves than PPI networks for both zebrafish and mouse. Conclusion Integration of existing experimental knowledge about gene-anatomical entity relationships with PPI networks via anatomy ontology improved the candidate gene prediction accuracy and optimized them for predicting candidate genes for anatomical entities.more » « less
-
Abstract Gene set enrichment analysis (GSEA) plays an important role in large-scale data analysis, helping scientists discover the underlying biological patterns over-represented in a gene list resulting from, for example, an ‘omics’ study. Gene Ontology (GO) annotation is the most frequently used classification mechanism for gene set definition. Here we present a new GSEA tool, PANGEA (PAthway, Network and Gene-set Enrichment Analysis; https://www.flyrnai.org/tools/pangea/), developed to allow a more flexible and configurable approach to data analysis using a variety of classification sets. PANGEA allows GO analysis to be performed on different sets of GO annotations, for example excluding high-throughput studies. Beyond GO, gene sets for pathway annotation and protein complex data from various resources as well as expression and disease annotation from the Alliance of Genome Resources (Alliance). In addition, visualizations of results are enhanced by providing an option to view network of gene set to gene relationships. The tool also allows comparison of multiple input gene lists and accompanying visualisation tools for quick and easy comparison. This new tool will facilitate GSEA for Drosophila and other major model organisms based on high-quality annotated information available for these species.
-
Abstract Cardiac fibroblasts (CFs) are an attractive target for reducing pathological cardiac remodeling, and understanding the underlying mechanisms of these processes is the key to develop successful therapies for treating the pressure‐overloaded heart. CF‐specific knockout (KO) mouse lines with a Cre recombinase under the control of human TCF21 (hTCF21) promoter and/or an adeno‐associated virus serotype 9 (AAV9)‐hTCF21 system provide a powerful tool for understanding CF biology in vivo. Although a variety of rat disease models are vital for the research of cardiac fibrosis similar to mouse models, there are few rat models that employ cardiac cell‐specific conditional gene modification, which has hindered the development and translational relevance of cardiac disease models. In addition, to date, there are no reports of gene manipulation specifically in rat CFs in vivo. Here, we report a simplified CF‐specific rat transgenic model using an AAV9‐hTCF21 system that achieved a CF‐specific expression of transgene in adult rat hearts. Moreover, we successfully applied this approach to specifically manipulate mitochondrial morphology in quiescent CFs. In summary, this model will allow us to develop fast and simple rat CF‐specific transgenic models for studying cardiovascular diseases in vivo.
-
Fiston-Lavier, Anna-Sophie (Ed.)
Abstract Summary Understanding the pathways and biological processes underlying differential gene expression is fundamental for characterizing gene expression changes in response to an experimental condition. Zebrafish, with a transcriptome closely mirroring that of humans, are frequently utilized as a model for human development and disease. However, a challenge arises due to the incomplete annotations of zebrafish pathways and biological processes, with more comprehensive annotations existing in humans. This incompleteness may result in biased functional enrichment findings and loss of knowledge. danRerLib, a versatile Python package for zebrafish transcriptomics researchers, overcomes this challenge and provides a suite of tools to be executed in Python including gene ID mapping, orthology mapping for the zebrafish and human taxonomy, and functional enrichment analysis utilizing the latest updated Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. danRerLib enables functional enrichment analysis for GO and KEGG pathways, even when they lack direct zebrafish annotations through the orthology of human-annotated functional annotations. This approach enables researchers to extend their analysis to a wider range of pathways, elucidating additional mechanisms of interest and greater insight into experimental results.
Availability and implementation danRerLib, along with comprehensive documentation and tutorials, is freely available. The source code is available at https://github.com/sdsucomptox/danrerlib/ with associated documentation and tutorials at https://sdsucomptox.github.io/danrerlib/. The package has been developed with Python 3.9 and is available for installation on the package management systems PIP (https://pypi.org/project/danrerlib/) and Conda (https://anaconda.org/sdsu_comptox/danrerlib) with additional installation instructions on the documentation website.
-
Birol, Inanc (Ed.)
Abstract Motivation Single-cell RNA sequencing (scRNA-seq) is widely used for analyzing gene expression in multi-cellular systems and provides unprecedented access to cellular heterogeneity. scRNA-seq experiments aim to identify and quantify all cell types present in a sample. Measured single-cell transcriptomes are grouped by similarity and the resulting clusters are mapped to cell types based on cluster-specific gene expression patterns. While the process of generating clusters has become largely automated, annotation remains a laborious ad hoc effort that requires expert biological knowledge.
Results Here, we introduce CellMeSH—a new automated approach to identifying cell types for clusters based on prior literature. CellMeSH combines a database of gene–cell-type associations with a probabilistic method for database querying. The database is constructed by automatically linking gene and cell-type information from millions of publications using existing indexed literature resources. Compared to manually constructed databases, CellMeSH is more comprehensive and is easily updated with new data. The probabilistic query method enables reliable information retrieval even though the gene–cell-type associations extracted from the literature are noisy. CellMeSH is also able to optionally utilize prior knowledge about tissues or cells for further annotation improvement. CellMeSH achieves top-one and top-three accuracies on a number of mouse and human datasets that are consistently better than existing approaches.
Availability and implementation Web server at https://uncurl.cs.washington.edu/db_query and API at https://github.com/shunfumao/cellmesh.
Supplementary information Supplementary data are available at Bioinformatics online.