skip to main content


Title: High-Level Approaches to Hardware Security: A Tutorial
Designers use third-party intellectual property (IP) cores and outsource various steps in the integrated circuit (IC) design and manufacturing flow. As a result, security vulnerabilities have been rising. This is forcing IC designers and end users to re-evaluate their trust in ICs. If attackers get hold of an unprotected IC, they can reverse engineer the IC and pirate the IP. Similarly, if attackers get hold of a design, they can insert malicious circuits or take advantage of “backdoors” in a design. Unintended design bugs can also result in security weaknesses. This tutorial paper provides an introduction to the domain of hardware security through two pedagogical examples of hardware security problems. The first is a walk-through of the scan chain-based side channel attack. The second is a walk-through of logic locking of digital designs. The tutorial material is accompanied by open access digital resources that are linked in this article.  more » « less
Award ID(s):
2039607
NSF-PAR ID:
10391979
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Various hardware security solutions have been developed recently to help counter hardware level attacks such as hardware Trojan, integrated circuit (IC) counterfeiting and intellectual property (IP) clone/piracy. However, existing solutions often provide specific types of protections. While these solutions achieve great success in preventing even advanced hardware attacks, the compatibility of among these hardware security methods are rarely discussed. The inconsistency hampers with the development of a comprehensive solution for hardware IC and IP from various attacks. In this paper, we develop a security primitive generator to help solve the compatibility issue among different protection techniques. Specifically, we focus on two modern IC/IP protection methods, logic locking and watermarking. A combined locking and watermarking technique is developed based on enhanced finite state machines (FSMs). The security primitive generator will take user-specified constraints and automatically generate an FSM module to perform both logic locking and watermarking. The generated FSM can be integrated into any designs for protection. Our experimental results show that the generator can facilitate circuit protection and provide the flexibility for users to achieve a better tradeoff between security levels and design overheads. 
    more » « less
  2. Outsourcing semiconductor device fabrication can result in malicious insertions and overbuilding of integrated circuits (ICs) by untrusted foundries without the IP owner’s knowledge. Active hardware metering methods attempt to combat IC piracy by requiring fabs to perform an activation protocol with the IP owner for each chip created. In this paper, we have taken a closer look at the IC metering through bus scrambling protocol mentioned in Maes et al., 2009 and we investigate alternatives which employ 1-out of 2 oblivious transfer (OT). Our focus is on Bellare Micali OT and Naor Pinkas OT, which, under certain assumptions, guarantee protection against malicious adversaries. Using OT as an alternative helps with the need to protect the integrity of the private input generated by the chip. Thus, the security of the protocol reduces to the Decisional Diffie Hellman sense. Finally, we discuss possible attacks and show how the proposed protocols could prevent them. 
    more » « less
  3. Hardware Trojan insertion and intellectual property (IP) theft are two major concerns when dealing with untrusted foundries. Most existing mitigation techniques are limited in protecting against both vulnerabilities. Split manufacturing is designed to stop IP piracy and IC cloning, but it fails at preventing untargeted hardware Trojan insertion and incurs significant overheads when high level of security is demanded. Built-in self-authentication (BISA) is a low cost technique for preventing and detecting hardware Trojan insertion, but is vulnerable to IP piracy, IC cloning or redesign attacks, especially on original circuitry. In this paper, we propose an obfuscated built-in self-authentication (OBISA) technique that combines and optimizes both techniques so that they complement and improve security against both vulnerabilities, while at the same time minimizing design overheads to the extent that the proposed method does not incur prohibitive cost for designs of industrial-level sophistication. Our evaluation on AES and DES cores shows that the proposed technique can reach security levels more than two times higher, satisfy all existing layout-based security metrics, while reducing overheads from hundreds of percents to less than 13% in power, less than 5% in delay, and zero percent in area, as compared to best reported performance in existing techniques. 
    more » « less
  4. Due to the increasing complexity of hardware designs, third-party hardware Intellectual Property (IP) cores are often incorporated to alleviate the burden on hardware designers. However, the prevalent use of third-party IPs has raised security concerns such as hardware Trojans. These Trojans inserted in the soft IPs are very difficult to detect through functional testing and no single detection methodology has been able to completely address this issue. Based on a Register- Transfer Level (RTL) soft IP analysis method named Structural Checking, this paper presents a hardware Trojan detection methodology and tool by detailing the implementation of a Golden Reference Library for matching an unknown IP to a functionally similar Golden Reference. The matching result is quantified in percentages so that two different IPs with similar functions have a higher percentage match. A match of the unknown IP to a whitelist IP advances it to be identified with a known functionality, while a match to a blacklist IP causes it to be detected as Trojan-infested. 
    more » « less
  5. The semiconductor industry must deal with different hardware threats like piracy and overproduction as a result of outsourcing manufacturing. While there are many proposals to lock the circuit using a global protected key only known to the designer, there exist numerous oracle-guided attacks that can examine the locked netlist with the assistance of an activated IC and extract the correct key. In this paper, by adopting a low-overhead structural method, we propose DK Lock, a novel Dual Key locking method that securely protects sequential circuits with two different keys that are applied to one set of key inputs at different times. DK Lock structurally adds an activation phase to the sequential circuit, and a correct key must be applied for several cycles to exit this phase. Once the circuit has been successfully activated, a new functional key must be applied to the same set of inputs to resume normal operation. DK Lock opens up new avenues for hardware IP protection by simultaneously refuting the single static key assumption of the existing attacks and overcoming the state explosion problem of state-of-the-art sequential logic locking methods. Our experiments confirm that DK Lock maintains a high degree of security with reasonable power and area overheads. 
    more » « less