skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Optical Proximity Sensing for Pose Estimation During In-Hand Manipulation
During in-hand manipulation, robots must be able to continuously estimate the pose of the object in order to generate appropriate control actions. The performance of algorithms for pose estimation hinges on the robot's sensors being able to detect discriminative geometric object features, but previous sensing modalities are unable to make such measurements robustly. The robot's fingers can occlude the view of environment- or robot-mounted image sensors, and tactile sensors can only measure at the local areas of contact. Motivated by fingertip-embedded proximity sensors' robustness to occlusion and ability to measure beyond the local areas of contact, we present the first evaluation of proximity sensor based pose estimation for in-hand manipulation. We develop a novel two-fingered hand with fingertip-embedded optical time-of-flight proximity sensors as a testbed for pose estimation during planar in-hand manipulation. Here, the in-hand manipulation task consists of the robot moving a cylindrical object from one end of its workspace to the other. We demonstrate, with statistical significance, that proximity-sensor based pose estimation via particle filtering during in-hand manipulation: a) exhibits 50% lower average pose error than a tactile-sensor based baseline; b) empowers a model predictive controller to achieve 30% lower final positioning error compared to when using tactile-sensor based pose estimates.  more » « less
Award ID(s):
1832795
NSF-PAR ID:
10392037
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
11818 to 11825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge of 3-D object shape is of great importance to robot manipulation tasks, but may not be readily available in unstructured environments. While vision is often occluded during robot-object interaction, high-resolution tactile sensors can give a dense local perspective of the object. However, tactile sensors have limited sensing area and the shape representation must faithfully approximate non-contact areas. In addition, a key challenge is efficiently incorporating these dense tactile measurements into a 3-D mapping framework. In this work, we propose an incremental shape mapping method using a GelSight tactile sensor and a depth camera. Local shape is recovered from tactile images via a learned model trained in simulation. Through efficient inference on a spatial factor graph informed by a Gaussian process, we build an implicit surface representation of the object. We demonstrate visuo-tactile mapping in both simulated and real-world experiments, to incrementally build 3-D reconstructions of household objects. 
    more » « less
  2. This paper explores the problem of autonomous, in-hand regrasping-the problem of moving from an initial grasp on an object to a desired grasp using the dexterity of a robot's fingers. We propose a planner for this problem which alternates between finger gaiting, and in-grasp manipulation. Finger gaiting enables the robot to move a single finger to a new contact location on the object, while the remaining fingers stably hold the object. In-grasp manipulation moves the object to a new pose relative to the robot's palm, while maintaining the contact locations between the hand and object. Given the object's geometry (as a mesh), the hand's kinematic structure, and the initial and desired grasps, we plan a sequence of finger gaits and object reposing actions to reach the desired grasp without dropping the object. We propose an optimization based approach and report in-hand regrasping plans for 5 objects over 5 in-hand regrasp goals each. The plans generated by our planner are collision free and guarantee kinematic feasibility. 
    more » « less
  3. The most common sensing modalities found in a robot perception system are vision and touch, which together can provide global and highly localized data for manipulation. However, these sensing modalities often fail to adequately capture the behavior of target objects during the critical moments as they transition out of static, controlled contact with an end-effector to dynamic and uncontrolled motion. In this work, we present a novel multimodal visuotactile sensor that provides simultaneous visuotactile and proximity depth data. The sensor integrates an RGB camera and air pressure sensor to sense touch with an infrared time-of-flight (ToF) camera to sense proximity by leveraging a selectively transmissive soft membrane to enable the dual sensing modalities. We present the mechanical design, fabrication techniques, algorithm implementations, and evaluation of the sensor's tactile and proximity modalities. The sensor is demonstrated in three open-loop robotic tasks: approaching and contacting an object, catching, and throwing. The fusion of tactile and proximity data could be used to capture key information about a target object's transition behavior for sensor-based control in dynamic manipulation. 
    more » « less
  4. We describe a single fingertip-mounted sensing system for robot manipulation that provides proximity (pre-touch), contact detection (touch), and force sensing (post-touch). The sensor system consists of optical time-of-flight range measurement modules covered in a clear elastomer. Because the elastomer is clear, the sensor can detect and range nearby objects, as well as measure deformations caused by objects that are in contact with the sensor and thereby estimate the applied force. We examine how this sensor design can be improved with respect to invariance to object reflectivity, signal-to-noise ratio, and continuous operation when switching between the distance and force measurement regimes. By harnessing time-of-flight technology and optimizing the elastomer-air boundary to control the emitted light's path, we develop a sensor that is able to seamlessly transition between measuring distances of up to 50 mm and contact forces of up to 10 newtons. We demonstrate that our sensor improves manipulation accuracy in a block unstacking task. Thorough instructions for manufacturing the sensor from inexpensive, commercially available components are provided, as well as all relevant hardware design files and software sources. 
    more » « less
  5. Madden, John D. ; Anderson, Iain A. ; Shea, Herbert R. (Ed.)
    Current robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. Human grasp is gentle yet firm, with integrated tactile touch feedback. Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure from gentle touch to high impact, controllably contract and expand at low voltage (battery levels), and attenuate force. The development of this technology towards sensing has provided for fingertip-like sensors that were able to detect very light pressures down to 0.01 N and even 0.005 N, with a wide pressure range to 25 N and more and with high linearity. By using these soft yet robust Tactile Fingertip™ sensors, immediate feedback was generated at the first point of contact. Because these elastomeric pads provided a soft compliant interface, the first point of contact did not apply excessive force, allowing for gentle object handling and control of the force applied to the object. The Tactile Fingertip could also detect a change in pressure location on its surface, i.e., directional glide provided real time feedback, making it possible to detect and prevent slippage by then adjusting the grip strength. Machine learning (ML) and artificial intelligence (AI) were integrated into these sensors for object identification along with the determination of good grip (position, grip force, no slip, no wobble) for pick-and-place and other applications. Synthetic Muscle™ is also being retrofitted as actuators into a human hand-like biomimetic gripper. The combination of EAP shape-morphing and sensing promises the potential for robotic grippers with human hand-like control and tactile sensing. This is expected to advance robotics, whether it is for agriculture, medical surgery, therapeutic or personal care, or in extreme environments where humans cannot enter, including with contagions that have no cure, as well as for collaborative robotics to allow humans and robots to intuitively work safely and effectively together. 
    more » « less