skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-speed 3D optical sensing for manufacturing research and industrial sensing applications
This paper presents examples of high-speed 3D optical sensing for research and applications in the manufacturing community. Specifically, this paper will focus on the fringe projection technique as a special technology that can be extremely beneficial to manufacturing applications, given its merits of simultaneous high-speed and high-accuracy 3D surface measurements. This paper will introduce the basic principles of 3D optical sensing based on the fringe projection technique as well as the enabled manufacturing research applications, including both in-situ/in-process monitoring and post-process quality assurance.  more » « less
Award ID(s):
2132773
PAR ID:
10392052
Author(s) / Creator(s):
Date Published:
Journal Name:
Transactions on Energy Systems and Engineering Applications
Volume:
3
Issue:
2
ISSN:
2745-0120
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes. 
    more » « less
  2. This study compares the accuracy of circular and linear fringe projection profilometry in the aspects of system calibration and 3D reconstruction. We introduce, what we believe to be, a novel calibration method and 3D reconstruction technique using circular and radial fringe patterns. Our approach is compared with the traditional linear phase-shifting method through several 2 × 2 experimental setups. Results indicate that our 3D reconstruction method surpasses the linear phase-shifting approach in performance, although calibration efficiency does not present a superior performance. Further analysis reveals that sensitivity and estimated phase error contribute to the relative underperformance in calibration. This paper offers insights into the potentials and limitations of circular fringe projection profilometry. 
    more » « less
  3. The value of electronic waste at present is estimated to increase rapidly year after year, and with rapid advances in electronics, shows no signs of slowing down. Storage devices such as SATA Hard Disks and Solid State Devices are electronic devices with high value recyclable raw materials which often goes unrecovered. Most of the e-waste currently generated, including HDDs, is either managed by the informal recycling sector, or is improperly landfilled with the municipal solid waste, primarily due to insufficient recovery infrastructure and labor shortage in the recycling industry. This emphasizes the importance of developing modern advanced recycling technologies such as robotic disassembly. Performing smooth robotic disassembly operations of precision electronics necessitates fast and accurate geometric 3D profiling to provide a quick and precise location of key components. Fringe Projection Profilometry (FPP), as a variation of the well-known structured light technology, provides both the high speed and high accuracy needed to accomplish this. However, Using FPP for disassembly of high-precision electronics such as hard disks can be especially challenging, given that the hard disk platter is almost completely reflective. Furthermore, the metallic nature of its various components make it difficult to render an accurate 3D reconstruction. To address this challenge, We have developed a single-shot approach to predict the 3D point cloud of these devices using a combination of computer graphics, fringe projection, and deep learning. We calibrate a physical FPP-based 3D shape measurement system and set up its digital twin using computer graphics. We capture HDD and SSD CAD models at various orientations to generate virtual training datasets consisting of fringe images and their point cloud reconstructions. This is used to train the U-NET which is then found efficient to predict the depth of the parts to a high accuracy with only a single shot fringe image. This proposed technology has the potential to serve as a valuable fast 3D vision tool for robotic re-manufacturing and is a stepping stone for building a completely automated assembly system. 
    more » « less
  4. Abstract Three-dimensional (3D) microneedle arrays (MAs) have shown remarkable performances for a wide range of biomedical applications. Achieving advanced customizable 3D MAs for personalized research and treatment remain a formidable challenge. In this paper, we have developed a high-resolution electrohydrodynamic (EHD) 3D printing process for fabricating customizable 3D MAs with economical and biocompatible molten alloy. The critical printing parameters (i.e., voltage and pressure) on the printing process for both two-dimensional (2D) and 3D features are characterized, and an optimal set of printing parameters was obtained for printing 3D MAs. We have also studied the effect of the tip-nozzle separation speed on the final tip dimension, which will directly influence MAs' insertion performance and functions. With the optimal process parameters, we successfully EHD printed customizable 3D MAs with varying spacing distances and shank heights. A 3 × 3 customized 3D MAs configuration with various heights ranging from 0.8 mm to 1 mm and a spacing distance as small as 350 μm were successfully fabricated, in which the diameter of each individual microneedle was as small as 100 μm. A series of tests were conducted to evaluate the printed 3D MAs. The experimental results demonstrated that the printed 3D MAs exhibit good mechanical strength for implanting and good electrical properties for electrophysiological sensing and stimulation. All results show the potential applications of the EHD printing technique in fabricating cost-effective, customizable, high-performance MAs for biomedical applications. 
    more » « less
  5. Three-dimensional (3D) shape measurement based on the fringe projection technique has been extensively used for scientific discoveries and industrial practices. Yet, one of the most challenging issues is its limited depth of field (DOF). This paper presents a method to drastically increase DOF of 3D shape measurement technique by employing the focal sweep method. The proposed method employs an electrically tunable lens (ETL) to rapidly sweep the focal plane during image integration and the post deconvolution algorithm to reconstruct focused images for 3D reconstruction. Experimental results demonstrated that our proposed method can achieve high-resolution and high-accuracy 3D shape measurement with greatly improved DOF in real time. 
    more » « less