skip to main content


Title: Do Simulated Augmented Reality Overlays Influence Street-Crossing Decisions for Non-Mobility-Impaired Older and Younger Adult Pedestrians?
Objective

This study used a virtual environment to examine how older and younger pedestrians responded to simulated augmented reality (AR) overlays that indicated the crossability of gaps in a continuous stream of traffic.

Background

Older adults represent a vulnerable group of pedestrians. AR has the potential to make the task of street-crossing safer and easier for older adults.

Method

We used an immersive virtual environment to conduct a study with age group and condition as between-subjects factors. In the control condition, older and younger participants crossed a continuous stream of traffic without simulated AR overlays. In the AR condition, older and younger participants crossed with simulated AR overlays signaling whether gaps between vehicles were safe or unsafe to cross. Participants were subsequently interviewed about their experience.

Results

We found that participants were more selective in their crossing decisions and took safer gaps in the AR condition as compared to the control condition. Older adult participants also reported reduced mental and physical demand in the AR condition compared to the control condition.

Conclusion

AR overlays that display the crossability of gaps between vehicles have the potential to make street-crossing safer and easier for older adults. Additional research is needed in more complex real-world scenarios to further examine how AR overlays impact pedestrian behavior.

Application

With rapid advances in autonomous vehicle and vehicle-to-pedestrian communication technologies, it is critical to study how pedestrians can be better supported. Our research provides key insights for ways to improve pedestrian safety applications using emerging technologies like AR.

 
more » « less
NSF-PAR ID:
10392089
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Volume:
66
Issue:
5
ISSN:
0018-7208
Format(s):
Medium: X Size: p. 1520-1530
Size(s):
["p. 1520-1530"]
Sponsoring Org:
National Science Foundation
More Like this
  1. As a third party to both automated and non-automated vehicles, pedestrians are among the most vulnerable participants in traffic. Currently, there is no way for them to communicate their intentions to an automated vehicle (AV). In this work, we explore the interactions between pedestrians and AVs at unmarked crossings. We propose a virtual reality testbed, in which we conducted a pilot study to compare three conditions: crossing a street before a car that (1) does not give information, (2) displays its locomotion, or (3) displays its locomotion and reacts to pedestrians' gestures. Our results show that gestures introduce a new point of failure, which can increase pedestrians' insecurity. However, communicating the vehicle's locomotion supports pedestrians, helping them to make safer decisions. 
    more » « less
  2. null (Ed.)
    This work presents a novel prototype autonomous vehicle (AV) human-machine interface (HMI) in virtual reality (VR) that utilizes a human-like visual embodiment in the driver’s seat of an AV to communicate AV intent to pedestrians in a crosswalk scenario. There is currently a gap in understanding the use of virtual humans in AV HMIs for pedestrian crossing despite the demonstrated efcacy of human-like interfaces in improving human-machine relationships. We conduct a 3x2 within-subjects experiment in VR using our prototype to assess the efects of a virtual human visual embodiment AV HMI on pedestrian crossing behavior and experience. In the experiment participants walk across a virtual crosswalk in front of an AV. How long they took to decide to cross and how long it took for them to reach the other side were collected, in addition to their subjective preferences and feelings of safety. Of 26 participants, 25 preferred the condition with the most anthropomorphic features. An intermediate condition where a human-like virtual driver was present but did not exhibit any behaviors was least preferred and also had a signifcant efect on time to decide. This work contributes the frst empirical work on using human-like visual embodiments for AV HMIs. 
    more » « less
  3. Abstract Objective

    Collisions between bicycles and motor vehicles are one of the leading risk factors for injury and death in childhood and adolescence. We examined longitudinal and concurrent effortful control (EC) as predictors of risky bicycling behavior in early- to mid-adolescence, with age and gender as moderators. We also examined whether EC was associated with parent-reported real-world bicycling behavior and all lifetime unintentional injuries.

    Methods

    Parent-reported EC measures were collected when children (N = 85) were 4 years old and when they were either 10 years (N = 42) or 15 years (N = 43) old. We assessed risky bicycling behavior by asking the adolescents to bicycle across roads with high-density traffic in an immersive virtual environment. Parents also reported on children’s real-world bicycling behavior and lifetime unintentional injuries at the time of the bicycling session.

    Results

    We found that both longitudinal and concurrent EC predicted adolescents’ gap choices, though these effects were moderated by age and gender. Lower parent-reported early EC in younger and older girls predicted a greater willingness to take tight gaps (3.5 s). Lower parent-reported concurrent EC in older boys predicted a greater willingness to take gaps of any size. Children lower in early EC started bicycling earlier and were rated as less cautious bicyclists as adolescents. Adolescents lower in concurrent EC were also rated as less cautious bicyclists and had experienced more lifetime unintentional injuries requiring medical attention.

    Conclusion

    Early measures of child temperament may help to identify at-risk populations who may benefit from parent-based interventions.

     
    more » « less
  4. Recent statistics reveal an alarming increase in accidents involving pedestrians (especially children) crossing the street. A common philosophy of existing pedestrian detection approaches is that this task should be undertaken by the moving cars themselves. In sharp departure from this philosophy, we propose to enlist the help of cars parked along the sidewalk to detect and protect crossing pedestrians. In support of this goal, we propose ADOPT: a system for Alerting Drivers to Occluded Pedestrian Traffic. ADOPT lays the theoretical foundations of a system that uses parked cars to: (1) detect the presence of a group of crossing pedestrians – a crossing cohort; (2) predict the time the last member of the cohort takes to clear the street; (3) send alert messages to those approaching cars that may reach the crossing area while pedestrians are still in the street; and, (4) show how approaching cars can adjust their speed, given several simultaneous crossing locations. Importantly, in ADOPT all communications occur over very short distances and at very low power. Our extensive simulations using SUMO-generated pedestrian and car traffic have shown the effectiveness of ADOPT in detecting and protecting crossing pedestrians. 
    more » « less
  5. Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The performance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31× reduction. 
    more » « less