ABSTRACT Many developmental processes rely on the localized activation of receptor tyrosine kinases and their canonical downstream effectors Erk and Akt, yet the specific roles played by each of these signals is still poorly understood. Gastruloids, 3D cell culture models of mammalian gastrulation and axial elongation, enable quantitative dissection of signaling patterns and cell responses in a simplified, experimentally accessible context. We find that mouse gastruloids contain posterior-to-anterior gradients of Erk and Akt phosphorylation induced by distinct receptor tyrosine kinases, with features of the Erk pattern and expression of its downstream target Snail exhibiting hallmarks of size-invariant scaling. Both Erk and Akt signaling contribute to cell proliferation, whereas Erk activation is also sufficient to induce Snail expression and precipitate profound tissue shape changes. We further uncover that Erk signaling is sufficient to convert the entire gastruloid to one of two mesodermal fates depending on position along the anteroposterior axis. In all, these data demonstrate functional roles for two core signaling gradients in mammalian development and suggest how these modules might be harnessed to engineer user-defined tissues with predictable shapes and cell fates.
more »
« less
DNA Methylation Dynamics During Esophageal Epithelial Regeneration Following Repair with Acellular Silk Fibroin Grafts in Rat
Abstract Esophageal pathologies such as atresia and benign strictures often require surgical reconstruction with autologous tissues to restore organ continuity. Complications such as donor site morbidity and limited tissue availability have spurred the development of acellular grafts for esophageal tissue replacement. Acellular biomaterials for esophageal repair rely on the activation of intrinsic regenerative mechanisms to mediate de novo tissue formation at implantation sites. Previous research has identified signaling cascades involved in neoepithelial formation in a rat model of onlay esophagoplasty with acellular silk fibroin grafts, including phosphoinositide 3‐kinase (PI3K), and protein kinase B (Akt) signaling. However, it is currently unknown how these mechanisms are governed by DNA methylation (DNAme) during esophageal wound healing processes. Reduced‐representation bisulfite sequencing is performed to characterize temporal DNAme dynamics in host and regenerated tissues up to 1 week postimplantation. Overall, global hypermethylation is observed at postreconstruction timepoints and an inverse correlation between promoter DNAme and the expression levels of differentially expressed proteins during regeneration. Site‐specific hypomethylation targets genes associated with immune activation, while hypermethylation occurs within gene bodies encoding PI3K‐Akt signaling components during the tissue remodeling period. The data provide insight into the epigenetic mechanisms during esophageal regeneration following surgical repair with acellular grafts.
more »
« less
- Award ID(s):
- 1763272
- PAR ID:
- 10392111
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Biology
- Volume:
- 7
- Issue:
- 5
- ISSN:
- 2701-0198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT De novo root regeneration (DNRR) is a developmental process that regenerates adventitious roots from wounded tissues. Phytohormone signaling pathways involved in microbial resistance are mobilized after cutting and influence de novo root regeneration. Microbes may positively or negatively influence the development and stress responses of a plant. However, most studies on the molecular mechanisms of de novo organogenesis are performed in aseptic conditions. Thus, the potential crosstalk between organ regeneration and biotic stresses is underexplored. Here, we report the development of a versatile experimental system to study the impact of microbes on DNRR. Using this system, we found that bacteria inhibited root regeneration by activation of, but not limited to, pathogen-associated molecular pattern (PAMP)-triggered immunity. Sensing bacteria-derived flagellin 22 peptide (flg22) inhibited root regeneration by interfering with the formation of an auxin maximum at the wound site. This inhibition relies on the receptor complex that recognizes microbial patterns but may bypass the requirement of salicylic acid signaling.more » « less
-
This study investigates bioelectric stimulation’s role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C. Scanning Electron Microscopy (SEM) showed that 140°C annealed scaffolds had enhanced lamellar structures, increased porosity, and maximum piezoelectric response. Mechanical tests indicated that 140°C annealing improved elastic modulus, tensile strength, and substrate stiffness, aligning these properties with physiological soft tissues. In vitro assessments in Schwann cells demonstrated favorable responses, with increased cell proliferation, contraction, and extracellular matrix attachment. Additionally, genes linked to extracellular matrix production, vascularization, and calcium signaling were upregulated. The foreign body response in C57BL/6 mice, evaluated through Hematoxylin and Eosin (H&E) and Picrosirius Red staining, showed no differences between scaffold groups, supporting the potential for future functional evaluation of the annealed group in tissue repair.more » « less
-
null (Ed.)Inducing regeneration in injured spinal cord represents one of modern medicine’s greatest challenges. Research from a variety of model organisms indicates that Hedgehog (Hh) signaling may be a useful target to drive regeneration. However, the mechanisms of Hh signaling-mediated tissue regeneration remain unclear. Here, we examined Hh signaling during post-amputation tail regeneration in Xenopus laevis larvae. We found that while Smoothened (Smo) activity is essential for proper spinal cord and skeletal muscle regeneration, transcriptional activity of the canonical Hh effector Gli is repressed immediately following amputation, and inhibition of Gli1/2 expression or transcriptional activity has minimal effects on regeneration. In contrast, we demonstrate that protein kinase A is necessary for regeneration of both muscle and spinal cord, in concert with and independent of Smo, respectively, and that its downstream effector CREB is activated in spinal cord following amputation in a Smo-dependent manner. Our findings indicate that non-canonical mechanisms of Hh signaling are necessary for spinal cord and muscle regeneration.more » « less
-
Köhler, Claudia (Ed.)Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.more » « less
An official website of the United States government
