skip to main content

This content will become publicly available on January 20, 2024

Title: Using small angle x-ray scattering to examine the aggregation mechanism in silica nanoparticle-based ambigels for improved optical clarity

Silica-based aerogels are a promising low-cost solution for improving the insulation efficiency of single-pane windows and reducing the energy consumption required for space heating and cooling. Two key material properties required are high porosity and small pore sizes, which lead to low thermal conductivity and high optical transparency, respectively. However, porosity and pore size are generally directly linked, where high porosity materials also have large pore sizes. This is unfavorable as large pores scatter light, resulting in reduced transmittance in the visible regime. In this work, we utilized preformed silica colloids to explore methods for reducing pore size while maintaining high porosity. The use of preformed colloids allows us to isolate the effect of solution conditions on porous gel network formation by eliminating simultaneous nanoparticle growth and aggregation found when using typical sol–gel molecular-based silica precursors. Specifically, we used in situ synchrotron-based small-angle x-ray scattering during gel formation to better understand how pH, concentration, and colloid size affect particle aggregation and pore structure. Ex situ characterization of dried gels demonstrates that peak pore widths can be reduced from 15 to 13 nm, accompanied by a narrowing of the overall pore size distribution, while maintaining porosities of 70%–80%. Optical transparency is found more » to increase with decreasing pore sizes while low thermal conductivities ranging from 95 +/− 13 mW/m K are maintained. Mechanical performance was found to depend primarily on effective density and did not show a significant dependence on solution conditions. Overall, our results provide insights into methods to preserve high porosity in nanoparticle-based aerogels while improving optical transparency.

« less
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10392115
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
3
Page Range or eLocation-ID:
Article No. 034702
ISSN:
0021-9606
Publisher:
American Institute of Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. Achieving a mesoporous structure in superinsulation materials is pivotal for guaranteeing a harmonious relationship between low thermal conductivity, high porosity, and low density. Herein, we report silica-based cryogel and aerogel materials by implementing freeze-drying and ambient-pressure-drying processes respectively. The obtained freeze-dried cryogels yield thermal conductivity of 23 mW m −1 K −1 , with specific surface area of 369.4 m 2 g −1 , and porosity of 96.7%, whereas ambient-pressure-dried aerogels exhibit thermal conductivity of 23.6 mW m −1 K −1 , specific surface area of 473.8 m 2 g −1 , and porosity of 97.4%. In addition, the fiber-reinforced nanocomposites obtained via freeze-drying feature a low thermal conductivity (28.0 mW m −1 K −1 ) and high mechanical properties (∼620 kPa maximum compressive stress and Young's modulus of 715 kPa), coupled with advanced flame-retardant capabilities, while the composite materials from the ambient pressure drying process have thermal conductivity of 28.8 mW m −1 K −1 , ∼200 kPa maximum compressive stress and Young's modulus of 612 kPa respectively. The aforementioned results highlight the capabilities of both drying processes for the development of thermal insulation materials for energy-efficient applications.
  2. The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic pore sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidated via the analysis of pastes synthesized using hydroxide- and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10–500 Å in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure withmore »smaller average pore size. Moreover, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size.« less
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. The study of thermal convection in porous media is of both fundamental and practical interest. Typically, numerical studies have relied on the volume-averaged Darcy–Oberbeck–Boussinesq (DOB) equations, where convection dynamics are assumed to be controlled solely by the Rayleigh number ( Ra ). Nusselt numbers ( Nu ) from these models predict Nu – Ra scaling exponents of 0.9–0.95. However, experiments and direct numerical simulations (DNS) have suggested scaling exponents as low as 0.319. Recent findings for solutal convection between DNS and DOB models have demonstrated that the ‘pore-scale parameters’ not captured by the DOB equations greatly influence convection. Thermal convection also has the additional complication of different thermal transport properties (e.g. solid-to-fluid thermal conductivity ratio k s / k f and heat capacity ratio σ ) in different phases. Thus, in this work we compare results for thermal convection from the DNS and DOB equations. On the effects of pore size, DNS results show that Nu increases as pore size decreases. Mega-plumes are also found to be more frequent and smaller for reduced pore sizes. On the effects of conjugate heat transfer, two groups of cases (Group 1 with varying k s / k f at σ  = 1 and Groupmore »2 with varying σ at k s / k f  = 1) are examined to compare the Nu – Ra relations at different porosity ( ϕ ) and k s / k f and σ values. Furthermore, we report that the boundary layer thickness is determined by the pore size in DNS results, while by both the Rayleigh number and the effective heat capacity ratio, $\bar{\phi } = \phi + (1 - \phi )\sigma$ , in the DOB model.« less
  5. We elucidate the mechanisms by which multi-walled carbon nanotubes (MWCNTs) influence the microstructure, fracture behavior, and hydration of cement paste. We disperse MWCNTs using a multi-step approach that involves high-energy pre-dispersion using ultrasonic energy followed by low-energy dispersion using un-hydrated cement particles. In turn, the low-energy dispersion step involves high-shear mixing and mechanical stirring. High-resolution environmental scanning electron microscopy of cement+0.2 wt% MWCNT, cement+0.5 wt% MWNCT, and of cement+1 wt% MWCNT show that MWCNTs bridge air voids, thereby refining the pore size and strengthening the C-S-H matrix. The fracture toughness increased by 9.38% with the addition of 0.2 wt% multi-walled carbon nanotubes, and by 14.06% with the addition of 0.5 wt% multi-walled carbon nanotubes and ligament bridging was the dominant toughening mechanism. Moreover, for all reinforcement levels, MWCNTs induced a conversion of low-density C-S-H into high-density C-S-H along with a drastic drop in the capillary porosity: adding 0.1–0.5 wt% MWCNT resulted in a 200% increase in the volume fraction of high-density C-S-H. Thus, our experiments show that MWCNT enhances the mechanical properties and transport properties by: (i) promoting high-density C-S-H formation, (ii) promoting calcium hydroxide formation, (iii) filling microscopic air voids, (iv) reducing the capillary porosity, (v) increasing the fractionmore »of small gel pores (1.2–2 nm in size), and (vi) by bridging microcracks.« less