Recommender systems traditionally find the most relevant products or services for users tailored to their needs or interests but they ignore the interests of the other sides of the market (aka stakeholders). In this paper, we propose to use a Ranked Bandit approach for an online multi-stakeholder recommender system that sequentially selects top 𝑘 items according to the relevance and priority of all the involved stakeholders. We presented three different criteria to consider the priority of each stakeholder when evaluating our approach. Our extensive experimental results on a movie dataset showed that the contextual multi-armed bandits with a relevance function make a higher level of satisfaction for all involved stakeholders in the long term. Keywords: Multi-stakeholder Recommender Systems; Multi-armed Bandits; Ranked Bandit; 
                        more » 
                        « less   
                    
                            
                            Context-aware Multi-stakeholder Recommender Systems
                        
                    
    
            Traditional recommender systems help users find the most relevant products or services to match their needs and preferences. However, they overlook the preferences of other sides of the market (aka stakeholders) involved in the system. In this paper, we propose to use contextual bandit algorithms in multi-stakeholder platforms where a multi-sided relevance function with adjusting weights is modeled to consider the preferences of all involved stakeholders. This algorithm sequentially recommends the items based on the contextual features of users along with the priority of the stakeholders and their relevance to the items.Our extensive experimental results on a dataset consisting of MovieLens (1m), IMDB (81k+), and a synthetic dataset show that our proposed approach outperforms the baseline methods and provides a good trade-off between the satisfaction of different stakeholders over time. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1739413
- PAR ID:
- 10392164
- Date Published:
- Journal Name:
- The International FLAIRS Conference Proceedings
- Volume:
- 35
- ISSN:
- 2334-0762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Clickbait headlines work through superlatives and intensifiers, creating information gaps to increase the relevance of their associated links that direct users to time-wasting and sometimes even malicious websites. This approach can be amplified using targeted clickbait that takes publicly available information from social media to align clickbait to users’ preferences and beliefs. In this work, we first conducted preliminary studies to understand the influence of targeted clickbait on users’ clicking behavior. Based on our findings, we involved 24 users in the participatory design of story-based warnings against targeted clickbait. Our analysis of user-created warnings led to four design variations, which we evaluated through an online survey over Amazon Mechanical Turk. Our findings show the significance of integrating information with persuasive narratives to create effective warnings against targeted clickbait. Overall, our studies provide valuable insights into understanding users’ perceptions and behaviors towards targeted clickbait, and the efficacy of story-based interventions.more » « less
- 
            Navigation assistive technologies have been designed to support individuals with visual impairments during independent mobility by providing sensory augmentation and contextual awareness of their surroundings. Such information is habitually provided through predefned audio-haptic interaction paradigms. However, individual capabilities, preferences and behavior of people with visual impairments are heterogeneous, and may change due to experience, context and necessity. Therefore, the circumstances and modalities for providing navigation assistance need to be personalized to different users, and through time for each user. We conduct a study with 13 blind participants to explore how the desirability of messages provided during assisted navigation varies based on users' navigation preferences and expertise. The participants are guided through two different routes, one without prior knowledge and one previously studied and traversed. The guidance is provided through turn-by-turn instructions, enriched with contextual information about the environment. During navigation and follow-up interviews, we uncover that participants have diversifed needs for navigation instructions based on their abilities and preferences. Our study motivates the design of future navigation systems capable of verbosity level personalization in order to keep the users engaged in the current situational context while minimizing distractions.more » « less
- 
            To address privacy concerns with the Internet of Things (IoT) devices, researchers have proposed enhancements in data collection transparency and user control. However, managing privacy preferences for shared devices with multiple stakeholders remains challenging. We introduced ThingPoll, a system that helps users negotiate privacy configurations for IoT devices in shared settings. We designed ThingPoll by observing twelve participants verbally negotiating privacy preferences, from which we identified potentially successful and inefficient negotiation patterns. ThingPoll bootstraps a preference model from a custom crowdsourced privacy preferences dataset. During negotiations, ThingPoll strategically scaffolds the process by eliciting users’ privacy preferences, providing helpful contexts, and suggesting feasible configuration options. We evaluated ThingPoll with 30 participants negotiating the privacy settings of 4 devices. Using ThingPoll, participants reached an agreement in 97.5% of scenarios within an average of 3.27 minutes. Participants reported high overall satisfaction of 83.3% with ThingPoll as compared to baseline approaches.more » « less
- 
            Many decision-making scenarios, e.g., public policy, healthcare, business, and disaster response, require accommodating the preferences of multiple stakeholders. We offer the first formal treatment of reasoning with multi-stakeholder qualitative preferences in a setting where stakeholders express their preferences in a qualitative preference language, e.g., CP-net, CI-net, TCP-net, CP-Theory. We introduce a query language for expressing queries against such preferences over sets of outcomes that satisfy specified criteria, e.g., ψ1PAψ2 (read loosely as the set of outcomes satisfying ψ1 that are preferred over outcomes satisfying ψ2 by a set of stakeholders A). Motivated by practical application scenarios, we introduce and analyze several alternative semantics for such queries, and examine their interrelationships. We provide a provably correct algorithm for answering multi-stakeholder qualitative preference queries using model checking in alternation-free μ-calculus. We present experimental results that demonstrate the feasibility of our approach.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    