skip to main content


Title: The Relationship between Ninth Graders’ Perceptions of Teacher Equity and Their Math Identity: Differences by Student Race and School Racial Composition

Using data on ninth graders, math teachers, and schools from the nationally representative High School Longitudinal Study of 2009, we investigate the following questions: (1) How do ninth graders’ perceptions of their math teachers as equitable relate to their math identity at the intersection of adolescents’ race and gender? and (2) Do differences in the percentage of students at the school who share the adolescent’s race moderate (i.e., differentiate) the salience of perceptions of math teachers for adolescents’ math identities? Our results suggest that adolescents who perceive their math teachers as equitable typically have higher levels of math identity regardless of their race or gender. Adolescents’ perceptions of their math teachers as equitable are most salient for adolescents’ math identity in racially diverse schools, where racial differences and stereotypes may be more visible. Findings also indicate the seeming resistance of Black youth to racist stereotypes, whose math identity remains high regardless of their perceptions of their teachers.

 
more » « less
Award ID(s):
1652279
NSF-PAR ID:
10392291
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Sociology of Education
Volume:
96
Issue:
2
ISSN:
0038-0407
Page Range / eLocation ID:
p. 129-148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Why do secondary students in the US consistently and increasingly report a lack of interest in mathematics? Lack of interest in mathematics has been well documented in TIMSS responses; students dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be worsening; in 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. In order to positively impact student attitudes towards mathematics, it is important to understand factors that may influence secondary students’ relationship with the discipline. This poster presents findings from an exploratory study of student disposition toward mathematics. We designed an online survey to learn about students’ relationship with mathematics, including experiences and settings that contribute to both positive and negative feelings about the subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New England districts. Though not randomly chosen, this sample allows us to examine student attitudes across a variety of contexts. We asked students about their feelings towards mathematics over the years, as well as which aspects of class they most enjoyed or disliked. Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP survey, which allows us to compare our sample with the national sample. Initial results indicate that student view their teachers and the topics of study as the central factors influencing their enjoyment of mathematics class. We found a correlation between responses that math is boring and that it is not relevant. Students who like math and those who do not reported different class activity preferences. For example, students who like math reported disliking watching a video in class, while students who dislike math reported disliking learning something new. Both groups of students (those who like math and those who do not) dislike math class when they have to present work to classmates, but hold positive views of solving puzzles and working with other students. Technology seems to appeal equally to both groups. Students who reported disliking math also look forward to playing competitive games. We saw no evidence that gender or race corresponded to students’ level of appreciation math. Finally, students reported liking math class less in high school than in middle school. Identifying factors that influence secondary student mathematical dispositions can inform curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new curricular designs can change student relationships with mathematics to reverse recent trends. 
    more » « less
  2. Why do secondary students in the US consistently and increasingly report a lack of interest in mathematics? Lack of interest in mathematics has been well documented in TIMSS responses; students dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be worsening; in 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. In order to positively impact student attitudes towards mathematics, it is important to understand factors that may influence secondary students’ relationship with the discipline. This poster presents findings from an exploratory study of student disposition toward mathematics. We designed an online survey to learn about students’ relationship with mathematics, including experiences and settings that contribute to both positive and negative feelings about the subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New England districts. Though not randomly chosen, this sample allows us to examine student attitudes across a variety of contexts. We asked students about their feelings towards mathematics over the years, as well as which aspects of class they most enjoyed or disliked. Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP survey, which allows us to compare our sample with the national sample. Initial results indicate that student view their teachers and the topics of study as the central factors influencing their enjoyment of mathematics class. We found a correlation between responses that math is boring and that it is not relevant. Students who like math and those who do not reported different class activity preferences. For example, students who like math reported disliking watching a video in class, while students who dislike math reported disliking learning something new. Both groups of students (those who like math and those who do not) dislike math class when they have to present work to classmates, but hold positive views of solving puzzles and working with other students. Technology seems to appeal equally to both groups. Students who reported disliking math also look forward to playing competitive games. We saw no evidence that gender or race corresponded to students’ level of appreciation math. Finally, students reported liking math class less in high school than in middle school. Identifying factors that influence secondary student mathematical dispositions can inform curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new curricular designs can change student relationships with mathematics to reverse recent trends. 
    more » « less
  3. Why do secondary students in the US consistently and increasingly report a lack of interest in mathematics? Lack of interest in mathematics has been well documented in TIMSS responses; students dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be worsening; in 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. In order to positively impact student attitudes towards mathematics, it is important to understand factors that may influence secondary students’ relationship with the discipline. This poster presents findings from an exploratory study of student disposition toward mathematics. We designed an online survey to learn about students’ relationship with mathematics, including experiences and settings that contribute to both positive and negative feelings about the subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New England districts. Though not randomly chosen, this sample allows us to examine student attitudes across a variety of contexts. We asked students about their feelings towards mathematics over the years, as well as which aspects of class they most enjoyed or disliked. Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP survey, which allows us to compare our sample with the national sample. Initial results indicate that student view their teachers and the topics of study as the central factors influencing their enjoyment of mathematics class. We found a correlation between responses that math is boring and that it is not relevant. Students who like math and those who do not reported different class activity preferences. For example, students who like math reported disliking watching a video in class, while students who dislike math reported disliking learning something new. Both groups of students (those who like math and those who do not) dislike math class when they have to present work to classmates, but hold positive views of solving puzzles and working with other students. Technology seems to appeal equally to both groups. Students who reported disliking math also look forward to playing competitive games. We saw no evidence that gender or race corresponded to students’ level of appreciation math. Finally, students reported liking math class less in high school than in middle school. Identifying factors that influence secondary student mathematical dispositions can inform curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new curricular designs can change student relationships with mathematics to reverse recent trends. 
    more » « less
  4. Abstract

    Maintaining adolescents' engagement with STEM (science, technology, engineering, and math) in and out of school may help ensure that adolescents are prepared to enter the STEM workforce. This study aims to extend prior work by documenting internal and external factors that matter for both STEM class engagement as well as engagement with STEM outside of school through STEM activism. Participants included  ninth and tenth grade students (N = 852) from ethnically diverse public schools in the Southeastern United States, approximately evenly divided by gender. Findings from regression analyses revealed that girls and participants who perceive educational barriers to STEM were less engaged in STEM classes, whereas those who reported learning about more male scientists in class, and those who reported higher levels of belonging, STEM growth mindset, and STEM motivation were more engaged in STEM classes. Those who reported higher critical motivation, critical action, belonging, and STEM motivation were more engaged in STEM activism outside of school. Findings suggest that STEM teachers and out‐of‐school program developers may learn new ways to engage students from each other. Further, findings highlight some factors that may promote engagement in STEM both in and out of schools such as belonging and STEM motivation.

     
    more » « less
  5. Abstract Background

    Students' recognition beliefs have emerged as one of the most important components of engineering role identity development for early‐career undergraduate students. Recognition beliefs are students' perceptions of how meaningful others, such as peers, instructors, and family, see them as engineers. However, little work has investigated the experiences that facilitate recognition beliefs, particularly across the intersections of race, ethnicity, and gender. Investigation of these experiences provides ways to understand how recognition may be supported in engineering environments and how White and masculine norms in engineering can shape marginalized students' experiences.

    Purpose

    We examined how specific experiences theorized to promote recognition are related to recognition beliefs for students at the intersections of race, ethnicity, and gender. Based on self‐reported demographics, we created 10 groups, including Asian, Black, Latino and Hispanic, Indigenous, and White cisgender men and Asian, Black, Latinè/x/a/o and Hispanic, Indigenous, and White ciswomen, trans, and non‐binary individuals. This article describes the patterns within each intersectional group rather than drawing comparisons across the groups, which can perpetuate raced and gendered stereotypes.

    Methods

    The data came from a survey distributed in Fall 2017 (n = 2316). Ten multiple regression models were used to understand the recognition experiences that influenced students' recognition beliefs by intersectional group.

    Results

    There is no one‐size‐fits‐all approach to developing students' recognition beliefs. For example, family members referring to the student as an engineer are positively related to recognition beliefs for Asian, Black, Latino and Hispanic, and White cisgender men. Friends seeing Asian and White marginalized gender students as an engineer is predictive of recognition beliefs. Other recognition experiences, such as receiving compliments from an engineering instructor or peer about their engineering design and contributions to the team, do not influence the recognition beliefs of these early‐career engineering students.

    Conclusion

    This article emphasizes the need to draw on multiple experiences to support the equitable development of early‐career engineers across race, ethnicity, and gender, and reveals patterns for recognition that may support future scholarship on effective classroom practices for recognition.

     
    more » « less