Despite recent advances in natural language generation, it remains challenging to control attributes of generated text. We propose DExperts: Decoding-time Experts, a decoding-time method for controlled text generation that combines a pretrained language model with “expert” LMs and/or “anti-expert” LMs in a product of experts. Intuitively, under the ensemble, tokens only get high probability if they are considered likely by the experts, and unlikely by the anti-experts. We apply DExperts to language detoxification and sentiment-controlled generation, where we outperform existing controllable generation methods on both automatic and human evaluations. Moreover, because DExperts operates only on the output of the pretrained LM, it is effective with (anti-)experts of smaller size, including when operating on GPT-3. Our work highlights the promise of tuning small LMs on text with (un)desirable attributes for efficient decoding-time steering.
more »
« less
Attribute Alignment: Controlling Text Generation from Pre-trained Language Models
Large language models benefit from training with a large amount of unlabeled text, which gives them increasingly fluent and diverse generation capabilities. However, using these models for text generation that takes into account target attributes, such as sentiment polarity or specific topics, remains a challenge. We propose a simple and flexible method for controlling text generation by aligning disentangled attribute representations. In contrast to recent efforts on training a discriminator to perturb the token level distribution for an attribute, we use the same data to learn an alignment function to guide the pre-trained, non-controlled language model to generate texts with the target attribute without changing the original language model parameters. We evaluate our method on sentiment- and topic-controlled generation, and show large performance gains over previous methods while retaining fluency and diversity.
more »
« less
- Award ID(s):
- 1840191
- NSF-PAR ID:
- 10392507
- Date Published:
- Journal Name:
- Findings of the Association for Computational Linguistics: EMNLP 2021
- Page Range / eLocation ID:
- 2251 to 2268
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large pretrained language models are successful at generating fluent text but are notoriously hard to controllably sample from. In this work, we study constrained sampling from such language models, i.e., generating text that satisfies user-defined constraints, while maintaining fluency and model’s performance in a downstream task. We propose MuCoLa—a sampling procedure that combines the log-likelihood of the language model with arbitrary (differentiable) constraints in a single energy function, and then generates samples in a non-autoregressive manner. Specifically, it initializes the entire output sequence with noise and follows a Markov chain defined by Langevin Dynamics using the gradients of this energy. We evaluate MuCoLa on text generation with soft and hard constraints as well as their combinations, obtaining significant improvements over competitive baselines for toxicity avoidance, sentiment control, and keyword-guided generation.more » « less
-
Abstract Eliciting informative user opinions from online reviews is a key success factor for innovative product design and development. The unstructured, noisy, and verbose nature of user reviews, however, often complicate large-scale need finding in a format useful for designers without losing important information. Recent advances in abstractive text summarization has created the opportunity to systematically generate opinion summaries from online reviews to inform the early stages of product design and development. However, two knowledge gaps hinder the applicability of opinion summarization methods in practice. First, there is a lack of formal mechanisms to guide the generative process with respect to different categories of product attributes and user sentiments. Second, the annotated training datasets needed for supervised training of abstractive summarization models are often difficult and costly to create. This article addresses these gaps by (1) devising an efficient computational framework for abstractive opinion summarization guided by specific product attributes and sentiment polarities, and (2) automatically generating a synthetic training dataset that captures various degrees of granularity and polarity. A hierarchical multi-instance attribute-sentiment inference mode is developed for assembling a high-quality synthetic dataset, which is utilized to fine-tune a pretrained language model for abstractive summary generation. Numerical experiments conducted on a large dataset scraped from three major e-Commerce retail store for apparel and footwear products indicate the performance, feasibility, and potentials of the developed framework. Several directions are provided for future exploration in the area of automated opinion summarization for user-centered design.more » « less
-
Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple text classification and sequence tagging.more » « less
-
Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision, which largely reduces human annotation efforts. Most existing methods first use the label names as static keyword-based features to generate pseudo labels, which are then used for final classifier training. While reasonable, such a commonly adopted framework suffers from two limitations: (1) keywords can have different meanings in different contexts and some text may not have any keyword, so keyword matching can induce noisy and inadequate pseudo labels; (2) the errors made in the pseudo label generation stage will directly propagate to the classifier training stage without a chance of being corrected. In this paper, we propose a new method, PIEClass, consisting of two modules: (1) a pseudo label acquisition module that uses zero-shot prompting of pre-trained language models (PLM) to get pseudo labels based on contextualized text understanding beyond static keyword matching, and (2) a noise-robust iterative ensemble training module that iteratively trains classifiers and updates pseudo labels by utilizing two PLM fine-tuning methods that regularize each other. Extensive experiments show that PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets and even achieves similar performance to fully-supervised classifiers on sentiment classification tasks.more » « less