ARGONAUTES are the central effector proteins of
Transcription factors (TF) require access to target sites within nucleosomes to initiate transcription. The target site position within the nucleosome significantly influences TF occupancy, but how is not quantitatively understood. Using ensemble and single-molecule fluorescence measurements, we investigated the targeting and occupancy of the transcription factor, Gal4, at different positions within the nucleosome. We observe a dramatic decrease in TF occupancy to sites extending past 30 base pairs (bp) into the nucleosome which cannot be explained by changes in the TF dissociation rate or binding site orientation. Instead, the nucleosome unwrapping free energy landscape is the primary determinant of Gal4 occupancy by reducing the Gal4 binding rate. The unwrapping free energy landscape defines two distinct regions of accessibility and kinetics with a boundary at 30 bp into the nucleosome where the inner region is over 100-fold less accessible. The Gal4 binding rate in the inner region no longer depends on its concentration because it is limited by the nucleosome unwrapping rate, while the frequency of nucleosome rewrapping decreases because Gal4 exchanges multiple times before the nucleosome rewraps. Our findings highlight the importance of the nucleosome unwrapping free energy landscape on TF occupancy and dynamics that ultimately influences transcription initiation.
- Award ID(s):
- 1715321
- Publication Date:
- NSF-PAR ID:
- 10392619
- Journal Name:
- Nucleic Acids Research
- Volume:
- 51
- Issue:
- 3
- Page Range or eLocation-ID:
- p. 1139-1153
- ISSN:
- 0305-1048
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract RNA silencing which bind target transcripts in a smallRNA ‐guided manner.Arabidopsis thaliana has 10 (ARGONAUTE ) genes, with specialized roles inAGO RNA ‐directedDNA methylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization among genes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO ,AGO 1 , andAGO 10 using yeast 1‐hybrid assays. A ranked list of candidateAGO 7DNA ‐bindingTF s revealed binding of the promoter by a number of proteins in two families: the miR156‐regulatedAGO 7SPL family and the miR319‐regulatedTCP family, both of which have roles in developmental timing and leaf morphology. Possible functions forSPL andTCP binding are unclear: we showed that these binding sites are not required for the polar expression pattern of , nor for the function ofAGO 7 in leaf shape. NormalAGO 7 transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO 7AGO 7‐triggered pathway functions in timing and polarity.TAS 3 -
SUMMARY The stilbenoid pathway is responsible for the production of resveratrol in grapevine (
Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP‐Seq) allows for the genome‐wide TF‐binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP‐Seq of MYB14/MYB15 was combined with aggregate gene co‐expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS ) targets, these regulators bind to 30 of 47STS family genes. Moreover, all three MYBs bind to severalPAL ,C4H , and4CL genes, in addition to shikimate pathway genes, theWRKY03 stilbenoid co‐regulator and resveratrol‐modifying gene candidates among which ROMT2‐3 were validated enzymatically. A high proportion of DAP‐Seq bound genes were induced in the activated transcriptomes of transientMYB15 ‐overexpressing grapevine leaves,more » -
The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.
-
Nb16W5O55 emerged as a high-rate anode material for Li-ion batteries in 2018 [Griffith et al., Nature2018, 559 (7715), 556−563]. This exciting discovery ignited research in Wadsley−Roth (W−R) compounds, but systematic experimental studies have not focused on how to tune material chemistry and structure to achieve desirable properties for energy storage applications. In this work, we systematically investigate how structure and composition influences capacity, Li-ion diffusivity, charge−discharge profiles, and capacity loss in a series of niobium tungsten oxide W−R compounds: (3 × 4)-Nb12WO33, (4 × 4)-Nb14W3O44, and (4 × 5)-Nb16W5O55. Potentiostatic intermittent titration (PITT) data confirmed that Li-ion diffusivity increases with block size, which can be attributed to an increasing number of tunnels for Li-ion diffusion. The small (3 × 4)-Nb12WO33 block size compound with preferential W ordering on tetrahedral sites exhibits single electron redox and, therefore, the smallest measured capacity despite having the largest theoretical capacity. This observation signals that introducing cation disorder (W occupancy at the octahedral sites in the block center) is a viable strategy to assess multi-electron redox behavior in (3 × 4) Nb12WO33. The asymmetric block size compounds [i.e., (3 × 4) and (4 × 5) blocks] exhibit the greatest capacity loss after the first cycle,more »
-
Abstract The Drosophila Boundary Element-Associated Factor of 32 kDa (BEAF) binds in promoter regions of a few thousand mostly housekeeping genes. BEAF is implicated in both chromatin domain boundary activity and promoter function, although molecular mechanisms remain elusive. Here, we show that BEAF physically interacts with the polybromo subunit (Pbro) of PBAP, a SWI/SNF-class chromatin remodeling complex. BEAF also shows genetic interactions with Pbro and other PBAP subunits. We examine the effect of this interaction on gene expression and chromatin structure using precision run-on sequencing and micrococcal nuclease sequencing after RNAi-mediated knockdown in cultured S2 cells. Our results are consistent with the interaction playing a subtle role in gene activation. Fewer than 5% of BEAF-associated genes were significantly affected after BEAF knockdown. Most were downregulated, accompanied by fill-in of the promoter nucleosome-depleted region and a slight upstream shift of the +1 nucleosome. Pbro knockdown caused downregulation of several hundred genes and showed a correlation with BEAF knockdown but a better correlation with promoter-proximal GAGA factor binding. Micrococcal nuclease sequencing supports that BEAF binds near housekeeping gene promoters while Pbro is more important at regulated genes. Yet there is a similar general but slight reduction of promoter-proximal pausing by RNA polymerase IImore »