skip to main content


Title: Repeated genetic divergence plays a minor role in repeated phenotypic divergence of lake-stream stickleback
Abstract

Recent studies have shown that the repeated evolution of similar phenotypes in response to similar ecological conditions (here “parallel evolution”) often occurs through mutations in the same genes. However, many previous studies have focused on known candidate genes in a limited number of systems. Thus, the question of how often parallel phenotypic evolution is due to parallel genetic changes remains open. Here, we used quantitative trait locus (QTL) mapping in F2 intercrosses between lake and stream threespine stickleback (Gasterosteus aculeatus) from four independent watersheds on Vancouver Island, Canada to determine whether the same QTL underlie divergence in the same phenotypes across, between, and within watersheds. We find few parallel QTL, even in independent crosses from the same watershed or for phenotypes that have diverged in parallel. These findings suggest that different mutations can lead to similar phenotypes. The low genetic repeatability observed in these lake-stream systems contrasts with the higher genetic repeatability observed in other stickleback systems. We speculate that differences in evolutionary history, gene flow, and/or the strength and direction of selection might explain these differences in genetic parallelism and emphasize that more work is needed to move beyond documenting genetic parallelism to identifying the underlying causes.

 
more » « less
PAR ID:
10392626
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
Volume:
77
Issue:
1
ISSN:
0014-3820
Format(s):
Medium: X Size: p. 110-122
Size(s):
p. 110-122
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Populations may adapt to similar environments via parallel or non‐parallel genetic changes, but the frequency of these alternative mechanisms and underlying contributing factors are still poorly understood outside model systems. We used QTL mapping to investigate the genetic basis of highly divergent craniofacial traits between the scale‐eater (Cyprinodon desquamator) and molluscivore (C. brontotheroides) pupfish adapting to two different hypersaline lake environments on San Salvador Island, Bahamas. We lab‐reared F2 scale‐eater x molluscivore intercrosses from two different lake populations, estimated linkage maps, scanned for significant QTL for 29 skeletal and craniofacial traits, female mate preference, and sex. We compared the location of QTL between lakes to quantify parallel and non‐parallel genetic changes. We detected significant QTL for six craniofacial traits in at least one lake. However, nearly all shared QTL loci were associated with a different craniofacial trait within each lake. Therefore, our estimate of parallel evolution of craniofacial genetic architecture could range from one out of six identical trait QTL (low parallelism) to five out of six integrated trait QTL (high parallelism). We suggest that pleiotropy and trait integration can affect estimates of parallel evolution, particularly within rapid radiations. We also observed increased adaptive introgression in shared QTL regions, suggesting that gene flow contributed to parallel evolution. Overall, our results suggest that the same genomic regions may contribute to parallel adaptation across integrated suites of craniofacial traits, rather than specific traits, and highlight the need for a more expansive definition of parallel evolution.

     
    more » « less
  2. Abstract

    Studies of parallel or convergent evolution (the repeated, independent evolution of similar traits in similar habitats) rarely explicitly quantify the extent of parallelism (i.e. variation in the direction and/or magnitude of divergence) between the sexes; instead, they often investigate both sexes together or exclude one sex. However, differences in male and female patterns of divergence could contribute to overall variation in the extent of parallelism among ecotype pairs, especially in sexually dimorphic traits. Failing to properly attribute such variation could lead to underestimates of the importance of environmental variation in shaping phenotypes. We investigate the extent of parallelism in the body shape of male and female beach and creek spawning sockeye salmon (Oncorhynchus nerka) from two lake systems in western Alaska that were colonized independently after the last ice age. Although both sexes showed some degree of parallelism, patterns of beach‐creek body shape divergence vary between the sexes and between lake systems. Phenotypic change vector analyses revealed highly parallel aspects of divergence between males from different lake systems (males from beaches had deeper bodies than males from creeks) but weaker parallelism in females and high parallelism between the sexes in one lake system but not the other. Body shape also had population‐specific components, which were mostly, but not entirely, explained by environmental variation in the form of creek depth. Our results highlight the importance of explicitly considering the extent of parallelism between the sexes and environmental variation among sites within habitat types.

     
    more » « less
  3. Abstract

    Studying parallel evolution allows us to draw conclusions about the repeatability of adaptive evolution. Whereas populations likely experience similar selective pressures in similar environments, it is not clear if this will always result in parallel divergence of ecologically relevant traits. Our study investigates the extent of parallelism associated with the evolution of pelvic spine reduction in brook stickleback populations. We find that populations with parallel divergence in pelvic spine morphology do not exhibit parallel divergence in head and body morphology but do exhibit parallel divergence in diet. In addition, we compare these patterns associated with pelvic reduction in brook stickleback to well-studied patterns of divergence between spined and unspined threespine stickleback. Whereas spine reduction is associated with littoral habitats and a benthic diet in threespine stickleback, spine reduction in brook stickleback is associated with a planktonic diet. Hence, we find that pelvic spine divergence is associated with largely non-parallel ecological consequences across species.

     
    more » « less
  4. Imperiale, Michael J. (Ed.)
    ABSTRACT The degree to which independent populations subjected to identical environmental conditions evolve in similar ways is a fundamental question in evolution. To address this question, microbial populations are often experimentally passaged in a given environment and sequenced to examine the tendency for similar mutations to repeatedly arise. However, there remains the need to develop an appropriate statistical framework to identify genes that acquired more mutations in one environment than in another (i.e., divergent evolution), genes that serve as genetic candidates of adaptation. Here, we develop a mathematical model to evaluate evolutionary outcomes among replicate populations in the same environment (i.e., parallel evolution), which can then be used to identify genes that contribute to divergent evolution. Applying this approach to data sets from evolve-and-resequence experiments, we found that the distribution of mutation counts among genes can be predicted as an ensemble of independent Poisson random variables with zero free parameters. Building on this result, we propose that the degree of divergent evolution at a given gene between populations from two different environments can be modeled as the difference between two Poisson random variables, known as the Skellam distribution. We then propose and apply a statistical test to identify specific genes that contribute to divergent evolution. By focusing on predicting patterns among replicate populations in a given environment, we are able to identify an appropriate test for divergence between environments that is grounded in first principles. IMPORTANCE There is currently no universally accepted framework for identifying genes that contribute to molecular divergence between microbial populations in different environments. To address this absence, we developed a null model to describe the distribution of mutation counts among genes. We find that divergent evolution within a given gene can be modeled as the absolute difference in the total number of mutations observed between two environments. This quantity is effectively captured by a probability distribution known as the Skellam distribution, providing an appropriate statistical test for researchers seeking to identify the set of genes that contribute to divergent evolution in microbial evolution experiments. 
    more » « less
  5. Abstract

    The Threespine Stickleback is ancestrally a marine fish, but many marine populations breed in fresh water (i.e., are anadromous), facilitating their colonization of isolated freshwater habitats a few years after they form. Repeated adaptation to fresh water during at least 10 My and continuing today has led to Threespine Stickleback becoming a premier system to study rapid adaptation. Anadromous and freshwater stickleback breed in sympatry and may hybridize, resulting in introgression of freshwater-adaptive alleles into anadromous populations, where they are maintained at low frequencies as ancient standing genetic variation. Anadromous stickleback have accumulated hundreds of freshwater-adaptive alleles that are disbursed as few loci per marine individual and provide the basis for adaptation when they colonize fresh water. Recent whole-lake experiments in lakes around Cook Inlet, Alaska have revealed how astonishingly rapid and repeatable this process is, with the frequency of 40% of the identified freshwater-adaptive alleles increasing from negligible (∼1%) in the marine founder to ≥50% within ten generations in fresh water, and freshwater phenotypes evolving accordingly. These high rates of genomic and phenotypic evolution imply very intense directional selection on phenotypes of heterozygotes. Sexual recombination rapidly assembles freshwater-adaptive alleles that originated in different founders into multilocus freshwater haplotypes, and regions important for adaptation to freshwater have suppressed recombination that keeps advantageous alleles linked within large haploblocks. These large haploblocks are also older and appear to have accumulated linked advantageous mutations. The contemporary evolution of Threespine Stickleback has provided broadly applicable insights into the mechanisms that facilitate rapid adaptation.

     
    more » « less