skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomic Layer Deposition of Cobalt Catalyst for Fischer–Tropsch Synthesis in Silicon Microchannel Microreactor
In recent years, rising environmental concerns have led to the focus on some of the innovative alternative technologies to produce clean burning fuels. Fischer–Tropsch (FT) synthesis is one of the alternative chemical processes to produce synthetic fuels, which has a current research focus on reactor and catalyst improvements. In this work, a cobalt nanofilm (~4.5 nm), deposited by the atomic layer deposition (ALD) technique in a silicon microchannel microreactor (2.4 cm long × 50 µm wide × 100 µm deep), was used as a catalyst for atmospheric Fischer–Tropsch (FT) synthesis. The catalyst film was characterized by XPS, TEM-EDX, and AFM studies. The data from AFM and TEM clearly showed the presence of polygranular cobalt species on the silicon wafer. The XPS studies of as-deposited and reduced cobalt nanofilm in silicon microchannels showed a shift on the binding energies of Co 2p spin splits and confirmed the presence of cobalt in the Co0 chemical state for FT synthesis. The FT studies using the microchannel microreactor were carried out at two different temperatures, 240 °C and 220 °C, with a syngas (H2:CO) molar ratio of 2:1. The highest CO conversion of 74% was observed at 220 °C with the distribution of C1–C4 hydrocarbons. The results showed no significant selectivity towards butane at the higher temperature, 240 °C. The deactivation studies were performed at 220 °C for 60 h. The catalyst exhibited long-term stability, with only ~13% drop in the CO conversion at the end of 60 h. The deactivated cobalt film in the microchannels was investigated by XPS, showing a weak carbon peak in the XPS spectra.  more » « less
Award ID(s):
1736173
PAR ID:
10392665
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
12
Issue:
14
ISSN:
2079-4991
Page Range / eLocation ID:
2425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fischer–Tropsch (FT) synthesis was carried out in a 3D printed stainless steel (SS) microchannel microreactor using bimetallic Co-Ru catalysts on three different mesoporous silica supports. CoRu-MCM-41, CoRu-SBA-15, and CoRu-KIT-6 were synthesized using a one-pot hydrothermal method and characterized by Brunner–Emmett–Teller (BET), temperature programmed reduction (TPR), SEM-EDX, TEM, and X-ray photoelectron spectroscopy (XPS) techniques. The mesoporous catalysts show the long-range ordered structure as supported by BET and low-angle XRD studies. The TPR profiles of metal oxides with H2 varied significantly depending on the support. These catalysts were coated inside the microchannels using polyvinyl alcohol and kinetic performance was evaluated at three different temperatures, in the low-temperature FT regime (210–270 °C), at different Weight Hourly Space Velocity (WHSV) in the range of 3.15–25.2 kgcat.h/kmol using a syngas ratio of H2/CO = 2. The mesoporous supports have a significant effect on the FT kinetics and stability of the catalyst. The kinetic models (FT-3, FT-6), based on the Langmuir–Hinshelwood mechanism, were found to be statistically and physically relevant for FT synthesis using CoRu-MCM-41 and CoRu-KIT-6. The kinetic model equation (FT-2), derived using Eley–Rideal mechanism, is found to be relevant for CoRu-SBA-15 in the SS microchannel microreactor. CoRu-KIT-6 was found to be 2.5 times more active than Co-Ru-MCM-41 and slightly more active than CoRu-SBA-15, based on activation energy calculations. CoRu-KIT-6 was ~3 and ~1.5 times more stable than CoRu-SBA-15 and CoRu-MCM-41, respectively, based on CO conversion in the deactivation studies. Keywords: Fischer-Tropsch synthesis; mesoporous silica based catalysts; kinetic studies; 3-D printed microchannel microreactor 
    more » « less
  2. M.A. Bañares E. Groppo, PhD (Ed.)
    Scale-up of Fischer-Tropsch (F-T) synthesis using microreactors is very important for a paradigm shift in the production of fuels and chemicals. The scalability of microreactors for F-T Synthesis was experimentally evaluated using 3D printed stainless steel microreactors, containing seven microchannels of dimensions 1000 µm × 1000 µm × 5cms. Mesoporous silica (KIT-6), with high surface area, containing ordered mesoporous structure was used to incorporate 10% cobalt and 5% ruthenium using a one-pot hydrothermal method. Bimetallic Co-Ru-KIT-6 catalyst was used for scale-up of F-T Synthesis. The performance of the catalysts was evaluated and examined for three different scale-up configurations (stand-alone, two, and four microreactors assembled in parallel) at both atmospheric pressure and 20 bar at F-T operating temperature of 240 °C using a syngas molar ratio (H2:CO) of 2. All three configurations of microreactors yielded not only comparable CO conversion (85.6–88.4%) and methane selectivity (~14%) but also similar selectivity towards lower gaseous hydrocarbons like ethane, propane, and butane (6.23–9.4%) observed in atmospheric F-T Synthesis. The overall selectivity to higher hydrocarbons, C5 + is in the range of 75–82% at 20 bars. A CFD model was used to investigate the effect of different design features and numbering up approaches on the performance of the microchannel reactor. The effect of the reactor inlet, the mixing internals and the channel designs on the dead zone %, the quality index factor, the cooling requirement and the maximum dimensionless temperature within the microreactor were quantified. There is no significant effect of increasing the channel width on the microreactor performance and operation of the microchannel reactor at lower Nusselt number that results in higher CO conversion. Increasing the channel width reduced the maximum temperature exhibited in the channel. Finally, the effect of increasing the y/x stacking ratio, i.e. having more reactor units in parallel compared to series, was investigated. Increasing the y/x ratio increased the cooling requirement and the maximum dimensionless temperature increase within the unit decreased the productivity. To minimize the productivity losses, numbering up in series is the better approach; however further analysis must be done to delineate heat removal requirements. 
    more » « less
  3. The effects of adding Mn and Na promoter metals to graphene oxide (GO)-supported iron-based catalysts for Ficher-Tropsch Synthesis (FTS) reactions to olefins at 20 bars were investigated in a 3D-printed stainless steel (SS) Microreactor. While promoter metals encourage reduction of iron oxide to iron to form iron carbide, the active metal catalysts in GO allow hydrogenation of CO. These catalysts were synthesized by layer deposition method and characterized by different techniques. The TEM images show the integration of graphene oxide into the catalysts. The XRD and XPS studies confirmed the crystal structure and oxidation states of the metals. The catalytic activity and product selectivity were studied in the temperature range of 200–350°Cwith a 2:1 M ratio of H2: CO. Higher CO conversion with greater selectivity for olefins was observed in the presence of the promoters. FeMnNa@GO showed better stability than both Fe@GO and FeMn@GO catalysts in time-on-stream studies. 
    more » « less
  4. Abstract While cobalt-based catalysts have been used in industrial Fischer-Tropsch synthesis for decades, little is known about how the dynamics of the Co-Co2C phase transformation drive their performance. Here we report on the occurrence of hysteresis effects in the Fischer-Tropsch reaction over potassium promoted Co/MnOxcatalyst. Both the reaction rate and the selectivity to chain-lengthened paraffins and terminally functionalized products (aldehydes, alcohols, olefins) show bistability when varying the hydrogen/carbon monoxide partial pressures back and forth from overall reducing to carbidizing conditions. While the carbon monoxide conversion and the selectivity to functionalized products follow clockwise hysteresis, the selectivity to paraffins shows counter-clockwise behavior. In situ X-ray diffraction demonstrates the activity/selectivity bistability to be driven by a Co-Co2C phase transformation. The conclusions are supported by High Resolution Transmission Electron Microscopy which identifies the Co-Co2C transformation, Mn5O8layered topologies at low H2/CO partial pressure ratios, and MnO at high such ratios. 
    more » « less
  5. Fischer–Tropsch conversion of syngas to hydrocarbons is proposed to begin with CO binding to the iron surface of the catalyst. CO adsorption on various iron facets of relevance to the Fischer–Tropsch process suggest that the Fe(111) surface is the most active for catalysis, and that CO bound to the penultimate layer of Fe atoms or the b-state is the resting state during catalysis. Notably, a μ-1,2 mode was discarded for the b-state due to a lack of exemplar molecular species and expectation that such a mode would have a higher energy infrared (IR) absorption than observed experimentally (viz. 1735–1860 cm–1). Here, we report the synthesis of a diiron(I/II) complex in which CO binds μ-1,2: (Fe(OTf))(Fe(THF)(μ-1,2-CO))L where L2– is a bis(β-diketiminate) cyclophane (1). Surprisingly, the observed νCO at 1763 cm–1 for 1 compares well with that reported for b-state. Electron paramagnetic resonance (EPR), Mössbauer, and density functional theory (DFT) results support a weakly coupled s = 3/2 iron(I) and s = 2 iron(II) pair. Reduction of 1 results in C–O cleavage and C–C bond formation to yield a ketenylidene (CCO) complex as a major product observed spectroscopically. 
    more » « less