skip to main content


Title: Increasing Precipitation Efficiency Amplifies Climate Sensitivity by Enhancing Tropical Circulation Slowdown and Eastern Pacific Warming Pattern
Abstract

The role of precipitation efficiency (PE)—the fraction of column‐integrated condensate that reaches the surface as rain—in the global temperature response to CO2rise is yet to be quantified. Here we employ 36 limited‐domain cloud resolving models (CRMs) from the Radiative‐Convective Equilibrium Model Intercomparison Project and find that they strongly imply higher PE at warmer temperatures. We then analyze 35 general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 6 and find that increasing PE is associated with tropical circulation slowdown and greater eastern equatorial Pacific warming. These changes trigger pan‐tropical positive cloud feedback through stratiform anvil cloud reduction and stratocumulus suppression, resulting in higher Effective Climate Sensitivity (ECS). We find that in 24 of 35 GCMs matching the CRMs in simulating increasing PE with greenhouse warming, mean ECS is 1 K higher than in PE‐decreasing GCMs. Thus, further constraining PE sensitivity to temperature could reduce uncertainty over future climate projections.

 
more » « less
NSF-PAR ID:
10392688
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) consists of simulations at three fixed sea‐surface temperatures (SSTs: 295, 300, and 305 K) and thus allows for a calculation of the climate feedback parameter based on the change of the top‐of‐atmosphere radiation imbalance. Climate feedback parameters range widely across RCEMIP, roughly from6 to 3 W m−2 K−1, particularly across general‐circulation models (GCMs) as well as global and large‐domain cloud‐resolving models (CRMs). Small‐domain CRMs and large‐eddy simulations have a smaller range of climate feedback parameters due to the absence of convective self‐aggregation. More than 70–80% of the intermodel spread in the climate feedback parameter can be explained by the combined temperature dependencies of convective aggregation and shallow cloud fraction. Low climate sensitivities are associated with an increase of shallow cloud fraction (increasing the planetary albedo) and/or an increase in convective aggregation with warming. An increase in aggregation is associated with an increase in outgoing longwave radiation, caused primarily by mid‐tropospheric drying, and secondarily by an expansion of subsidence regions. Climate sensitivity is neither dependent on the average amount of aggregation nor on changes in deep/anvil cloud fraction. GCMs have a lower overall climate sensitivity than CRMs because in most GCMs convective aggregation increases with warming, whereas in CRMs, convective aggregation shows no consistent temperature trend.

     
    more » « less
  2. Abstract

    The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.

     
    more » « less
  3. Abstract

    Shifts in Southern Ocean (SO, 40–85°S) shortwave cloud feedback (SWFB) toward more positive values are the dominant contributor to higher effective climate sensitivity (ECS) in Coupled Model Intercomparison Project Phase 6 (CMIP6) models. To provide an observational constraint on the SOSWFB, we use a simplified physical model to connect SOSWFBwith the response of column‐integrated liquid water mass (LWP) to warming and the susceptibility of albedo to LWP in 50 CMIP5 and CMIP6 GCMs. In turn, we predict the responses of SO LWP using a cloud‐controlling factor (CCF) model. The combination of the CCF model and radiative susceptibility explains about 50% of the variance in the GCM‐simulatedSWFBin the SO. Observations of SW radiation fluxes, LWP, and CCFs from reanalysis are used to constrain the SOSWFB. Observations suggest a SO LWP increase in response to warming and albedo susceptibility to LWP that is on the lower end relative to GCMs. The overall constraint on the contribution of SO to global meanSWFBis −0.168 to +0.051 W m−2 K−1, relative to −0.277 to +0.270 Wm−2 K−1. In summary, observations suggest SOSWFBis less likely to be as extremely positive as predicted by some CMIP6 GCMs, but more likely to range from moderately negative to weakly positive.

     
    more » « less
  4. Abstract

    The persistent inter‐model spread in the response of global‐mean surface temperature to increased CO2(known as the “Equilibrium Climate Sensitivity,” or “ECS”) is a crucial problem across model generations. This work examines the influence of the models' present‐day atmospheric circulation climatologies, and the accompanying climatological cloud radiative effects, in explaining that spread. We analyze the Coupled Model Intercomparison Project Phase 6 (CMIP6) models and find that they simulate a more poleward, and thus more realistic, edge of the Hadley cell (HC) in the Southern Hemisphere than the CMIP5 models, although the climatological shortwave cloud radiative effects are similar in the two generations of models. A few CMIP5 models with extreme equatorward biases in the HC edge exhibited high ECS due to strong Southern midlatitude shortwave cloud radiative warming in response to climate change, suggesting an ECS dependence on HC position. We find that such constraint no longer holds for the CMIP6 models, due to the absence of models with extreme HC climatologies. In spite of this, however, the CMIP6 models show an increased spread in ECS, with more models in the high ECS range. In addition, an improved representation of the climatological jet dynamics does not lead to a new emergent constraint in the CMIP6 models either.

     
    more » « less
  5. Abstract

    This work documents version two of the Department of Energy's Energy Exascale Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid‐latitudes and 30 km at the equator and poles. The model performance is evaluated with Coupled Model Intercomparison Project Phase 6 Diagnosis, Evaluation, and Characterization of Klima simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate has many realistic features of the climate system, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Program assessment. However, a number of important biases remain including a weak Atlantic Meridional Overturning Circulation, deficiencies in the characteristics and spectral distribution of tropical atmospheric variability, and a significant underestimation of the observed warming in the second half of the historical period. An analysis of single‐forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol‐related forcing.

     
    more » « less