skip to main content

This content will become publicly available on November 1, 2023

Title: Observation of radon mitigation in MicroBooNE by a liquid argon filtration system
Abstract The MicroBooNE liquid argon time projection chamber (LArTPC) maintains a high level of liquid argon purity through the use of a filtration system that removes electronegative contaminants in continuously-circulated liquid, recondensed boil off, and externally supplied argon gas. We use the MicroBooNE LArTPC to reconstruct MeV-scale radiological decays. Using this technique we measure the liquid argon filtration system's efficacy at removing radon. This is studied by placing a 500 kBq 222 Rn source upstream of the filters and searching for a time-dependent increase in the number of radiological decays in the LArTPC. In the context of two models for radon mitigation via a liquid argon filtration system, a slowing mechanism and a trapping mechanism, MicroBooNE data supports a radon reduction factor of greater than 97% or 99.999%, respectively. Furthermore, a radiological survey of the filters found that the copper-based filter material was the primary medium that removed the 222 Rn. This is the first observation of radon mitigation in liquid argon with a large-scale copper-based filter and could offer a radon mitigation solution for future large LArTPCs.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
2047665 2207171
Publication Date:
NSF-PAR ID:
10392724
Journal Name:
Journal of Instrumentation
Volume:
17
Issue:
11
Page Range or eLocation-ID:
P11022
ISSN:
1748-0221
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, D L , in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of ∼70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure D L = 3.74 +0.28 -0.29 cm 2 /s.
  2. Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range,more »as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.« less
  3. Abstract

    Submarine groundwater discharge (SGD) is an important driver of coastal biogeochemical budgets worldwide. Radon (222Rn) has been widely used as a natural geochemical tracer to quantify SGD, but field measurements are time consuming and costly. Here, we use deep learning to predict coastal seawater radon in SGD‐impacted regions. We hypothesize that deep learning could resolve radon trends and enable preliminary insights with limited field observations of groundwater tracers. Two deep learning models were trained on global coastal seawater radon observations (n = 39,238) with widely available inputs (e.g., salinity, temperature, water depth). The first model used a one‐dimensional convolutional neural network (1D‐CNN‐RNN) framework for site‐specific gap filling and producing short‐term future predictions. A second model applied a fully connected neural network (FCNN) framework to predict radon across geographically and hydrologically diverse settings. Both models can predict observed radon concentrations withr2 > 0.76. Specifically, the FCNN model offers a compelling development because synthetic radon tracer data sets can be obtained using only basic water quality and meteorological parameters. This opens opportunities to attain radon data from regions with large data gaps, such as the Global South and other remote locations, allowing for insights that can be used to predict SGD and plan field experiments.more »Overall, we demonstrate how field‐based measurements combined with big‐data approaches such as deep learning can be utilized to assess radon and potentially SGD beyond local scales.

    « less
  4. A bstract The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 93.7% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in ν μ CC interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS,more »and DUNE.« less
  5. Abstract Since the original detection of core-collapse supernova neutrinos in 1987, all large neutrino experiments seek to detect the neutrinos from the next nearby supernova. Among them, liquid argon time projection chambers (LArTPCs) offer a unique sensitivity to the electron neutrino flux of a supernova. However, the low energy of these events (scale of MeVs), and the fact that all large (multi-tonne) LArTPCs operating at the moment are located near the Earth’s surface, and are therefore subject to an intense cosmic ray flux, makes triggering on the supernova neutrinos very challenging. Instead, MicroBooNE has pioneered a novel approach for detecting supernova neutrinos based on a continuous readout stream and a delayed trigger generated by other neutrino detectors (the Supernova Early Warning System, or SNEWS). MicroBooNE’s data is stored temporarily for a few days, awaiting a SNEWS alert to prompt the permanent recording of the data. In order to cope with the large data rates produced by the continuous readout of the TPC and the PMT systems of MicroBooNE, FPGA-based zero-suppression algorithms have been developed.