skip to main content


Title: An Improved 1.5-Gigabase Draft Assembly of Massospora cicadina (Zoopagomycota), an Obligate Fungal Parasite of 13- and 17-Year Cicadas
ABSTRACT A 1.488-Gb draft genome sequence was assembled for the fungus Massospora cicadina , an obligate parasite of periodical cicadas. The M. cicadina genome has experienced massive expansion via transposable elements (TEs), which account for 92% of the genome.  more » « less
Award ID(s):
1441715 1429826 2215705
PAR ID:
10392801
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Rokas, Antonis
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
11
Issue:
10
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hares (genus Lepus) provide clear examples of repeated and often massive introgressive hybridization and striking local adaptations. Genomic studies on this group have so far relied on comparisons to the European rabbit (Oryctolagus cuniculus) reference genome. Here, we report the first de novo draft reference genome for a hare species, the mountain hare (Lepus timidus), and evaluate the efficacy of whole-genome re-sequencing analyses using the new reference versus using the rabbit reference genome. The genome was assembled using the ALLPATHS-LG protocol with a combination of overlapping pair and mate-pair Illumina sequencing (77x coverage). The assembly contained 32,294 scaffolds with a total length of 2.7 Gb and a scaffold N50 of 3.4 Mb. Re-scaffolding based on the rabbit reference reduced the total number of scaffolds to 4,205 with a scaffold N50 of 194 Mb. A correspondence was found between 22 of these hare scaffolds and the rabbit chromosomes, based on gene content and direct alignment. We annotated 24,578 protein coding genes by combining ab-initio predictions, homology search, and transcriptome data, of which 683 were solely derived from hare-specific transcriptome data. The hare reference genome is therefore a new resource to discover and investigate hare-specific variation. Similar estimates of heterozygosity and inferred demographic history profiles were obtained when mapping hare whole-genome re-sequencing data to the new hare draft genome or to alternative references based on the rabbit genome. Our results validate previous reference-based strategies and suggest that the chromosome-scale hare draft genome should enable chromosome-wide analyses and genome scans on hares. 
    more » « less
  2. Improvements in DNA sequencing technology and computational methods have led to a substantial increase in the creation of high-quality genome assemblies of many species. To understand the biology of these genomes, annotation of gene features and other functional elements is essential; however for most species, only the reference genome is well-annotated. One strategy to annotate new or improved genome assemblies is to map or ‘lift over’ the genes from a previously-annotated reference genome. Here we describe Liftoff, a new genome annotation lift-over tool capable of mapping genes between two assemblies of the same or closely-related species. Liftoff aligns genes from a reference genome to a target genome and finds the mapping that maximizes sequence identity while preserving the structure of each exon, transcript, and gene. We show that Liftoff can accurately map 99.9% of genes between two versions of the human reference genome with an average sequence identity >99.9%. We also show that Liftoff can map genes across species by successfully lifting over 98.4% of human protein-coding genes to a chimpanzee genome assembly with 98.7% sequence identity. Availability The source code for Liftoff is available at https://github.com/agshumate/Liftoff 
    more » « less
  3. Abstract

    Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle,Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for “colonizer” traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21‐fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.

     
    more » « less
  4. The genome of an individual from an admixed population consists of segments originated from different ancestral populations. Most existing ancestry inference approaches focus on calling these segments for the extant individual. In this paper, we present a general ancestry inference approach for inferring recent ancestors from an extant genome. Given the genome of an individual from a recently admixed population, our method can estimate the proportions of the genomes of the recent ancestors of this individual that originated from some ancestral populations. The key step of our method is the inference of ancestors (called founders) right after the formation of an admixed population. The inferred founders can then be used to infer the ancestry of recent ancestors of an extant individual. Our method is implemented in a computer program called PedMix2. To the best of our knowledge, there is no existing method that can practically infer ancestors beyond grandparents from an extant individual’s genome. Results on both simulated and real data show that PedMix2 performs well in ancestry inference.

     
    more » « less
  5. Abstract

    Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole,Anolis sagrei– a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes ofA. sagrei.

     
    more » « less