The free multiplicative Brownian motion
A longstanding problem in mathematical physics is the rigorous derivation of the incompressible Euler equation from Newtonian mechanics. Recently, HanKwan and Iacobelli (Proc Am Math Soc 149:3045–3061, 2021) showed that in the monokinetic regime, one can directly obtain the Euler equation from a system of
 NSFPAR ID:
 10392820
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 Letters in Mathematical Physics
 Volume:
 113
 Issue:
 1
 ISSN:
 03779017
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract is the large$$b_{t}$$ ${b}_{t}$N limit of the Brownian motion on in the sense of$$\mathsf {GL}(N;\mathbb {C}),$$ $\mathrm{GL}(N\u037eC),$ distributions. The natural candidate for the large$$*$$ $\ast $N limit of the empirical distribution of eigenvalues is thus the Brown measure of . In previous work, the second and third authors showed that this Brown measure is supported in the closure of a region$$b_{t}$$ ${b}_{t}$ that appeared in the work of Biane. In the present paper, we compute the Brown measure completely. It has a continuous density$$\Sigma _{t}$$ ${\Sigma}_{t}$ on$$W_{t}$$ ${W}_{t}$ which is strictly positive and real analytic on$$\overline{\Sigma }_{t},$$ ${\overline{\Sigma}}_{t},$ . This density has a simple form in polar coordinates:$$\Sigma _{t}$$ ${\Sigma}_{t}$ where$$\begin{aligned} W_{t}(r,\theta )=\frac{1}{r^{2}}w_{t}(\theta ), \end{aligned}$$ $\begin{array}{c}{W}_{t}(r,\theta )=\frac{1}{{r}^{2}}{w}_{t}\left(\theta \right),\end{array}$ is an analytic function determined by the geometry of the region$$w_{t}$$ ${w}_{t}$ . We show also that the spectral measure of free unitary Brownian motion$$\Sigma _{t}$$ ${\Sigma}_{t}$ is a “shadow” of the Brown measure of$$u_{t}$$ ${u}_{t}$ , precisely mirroring the relationship between the circular and semicircular laws. We develop several new methods, based on stochastic differential equations and PDE, to prove these results.$$b_{t}$$ ${b}_{t}$ 
Abstract We improve the previously best known upper bounds on the sizes of
spherical codes for every$$\theta $$ $\theta $ at least by a factor of 0.4325, in sufficiently high dimensions. Furthermore, for sphere packing densities in dimensions$$\theta <\theta ^*\approx 62.997^{\circ }$$ $\theta <{\theta}^{\ast}\approx 62.{997}^{\circ}$ we have an improvement at least by a factor of$$n\ge 2000$$ $n\ge 2000$ . Our method also breaks many nonnumerical sphere packing density bounds in smaller dimensions. This is the first such improvement for each dimension since the work of Kabatyanskii and Levenshtein (Problemy Peredači Informacii 14(1):3–25, 1978) and its later improvement by Levenshtein (Dokl Akad Nauk SSSR 245(6):1299–1303, 1979) . Novelties of this paper include the analysis of triple correlations, usage of the concentration of mass in high dimensions, and the study of the spacings between the roots of Jacobi polynomials.$$0.4325+\frac{51}{n}$$ $0.4325+\frac{51}{n}$ 
By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1Wasserstein metric over the planar grid
$\{0,1,\dots , n\}^2$ has$L_1$ distortion bounded below by a constant multiple of$\sqrt {\log n}$ . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if$\{G_n\}_{n=1}^\infty$ is a sequence of graphs whose isoperimetric dimension and Lipschitzspectral dimension equal a common number$\delta \in [2,\infty )$ , then the 1Wasserstein metric over$G_n$ has$L_1$ distortion bounded below by a constant multiple of$(\log G_n)^{\frac {1}{\delta }}$ . We proceed to compute these dimensions for$\oslash$ powers of certain graphs. In particular, we get that the sequence of diamond graphs$\{\mathsf {D}_n\}_{n=1}^\infty$ has isoperimetric dimension and Lipschitzspectral dimension equal to 2, obtaining as a corollary that the 1Wasserstein metric over$\mathsf {D}_n$ has$L_1$ distortion bounded below by a constant multiple of$\sqrt {\log  \mathsf {D}_n}$ . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of$L_1$ embeddable graphs whose sequence of 1Wasserstein metrics is not$L_1$ embeddable. 
Abstract It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
arXiv:2010.09793 ) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain$$L_{\beta ,\gamma } = {\text {div}}D^{d+1+\gamma n} \nabla $$ ${L}_{\beta ,\gamma}=\text{div}{D}^{d+1+\gamma n}\nabla $ with a uniformly rectifiable boundary$$\Omega \subset {\mathbb {R}}^n$$ $\Omega \subset {R}^{n}$ of dimension$$\Gamma $$ $\Gamma $ , the now usual distance to the boundary$$d < n1$$ $d<n1$ given by$$D = D_\beta $$ $D={D}_{\beta}$ for$$D_\beta (X)^{\beta } = \int _{\Gamma } Xy^{d\beta } d\sigma (y)$$ ${D}_{\beta}{\left(X\right)}^{\beta}={\int}_{\Gamma}{Xy}^{d\beta}d\sigma \left(y\right)$ , where$$X \in \Omega $$ $X\in \Omega $ and$$\beta >0$$ $\beta >0$ . In this paper we show that the Green function$$\gamma \in (1,1)$$ $\gamma \in (1,1)$G for , with pole at infinity, is well approximated by multiples of$$L_{\beta ,\gamma }$$ ${L}_{\beta ,\gamma}$ , in the sense that the function$$D^{1\gamma }$$ ${D}^{1\gamma}$ satisfies a Carleson measure estimate on$$\big  D\nabla \big (\ln \big ( \frac{G}{D^{1\gamma }} \big )\big )\big ^2$$ $D\nabla (ln(\frac{G}{{D}^{1\gamma}})){}^{2}$ . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).$$\Omega $$ $\Omega $ 
Abstract In this paper, we study multistage stochastic mixedinteger nonlinear programs (MSMINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with
nonLipschitzian value functions and multistage stochastic mixedinteger linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MSMINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a stage stochastic MINLP satisfying$$(T+1)$$ $(T+1)$L exact Lipschitz regularization withd dimensional state spaces, to obtain an optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by$$\varepsilon $$ $\epsilon $ , and is lower bounded by$${\mathcal {O}}((\frac{2LT}{\varepsilon })^d)$$ $O\left({\left(\frac{2LT}{\epsilon}\right)}^{d}\right)$ for the general case or by$${\mathcal {O}}((\frac{LT}{4\varepsilon })^d)$$ $O\left({\left(\frac{\mathrm{LT}}{4\epsilon}\right)}^{d}\right)$ for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends$${\mathcal {O}}((\frac{LT}{8\varepsilon })^{d/21})$$ $O\left({\left(\frac{\mathrm{LT}}{8\epsilon}\right)}^{d/21}\right)$polynomially on the number of stages. We further show that the iteration complexity dependslinearly onT , if all the state spaces are finite sets, or if we seek a optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with$$(T\varepsilon )$$ $\left(T\epsilon \right)$T . To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixedinteger optimization.