skip to main content


Title: scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection
Abstract

Single cell data integration methods aim to integrate cells across data batches and modalities, and data integration tasks can be categorized into horizontal, vertical, diagonal, and mosaic integration, where mosaic integration is the most general and challenging case with few methods developed. We propose scMoMaT, a method that is able to integrate single cell multi-omics data under the mosaic integration scenario using matrix tri-factorization. During integration, scMoMaT is also able to uncover the cluster specific bio-markers across modalities. These multi-modal bio-markers are used to interpret and annotate the clusters to cell types. Moreover, scMoMaT can integrate cell batches with unequal cell type compositions. Applying scMoMaT to multiple real and simulated datasets demonstrated these features of scMoMaT and showed that scMoMaT has superior performance compared to existing methods. Specifically, we show that integrated cell embedding combined with learned bio-markers lead to cell type annotations of higher quality or resolution compared to their original annotations.

 
more » « less
Award ID(s):
2019771
NSF-PAR ID:
10392835
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Current biotechnologies can simultaneously measure multiple high-dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the same cells. A combination of different analytical tasks (e.g., multi-modal integration and cross-modal analysis) is required to comprehensively understand such data, inferring how gene regulation drives biological diversity and functions. However, current analytical methods are designed to perform a single task, only providing a partial picture of the multi-modal data. Here, we present UnitedNet, an explainable multi-task deep neural network capable of integrating different tasks to analyze single-cell multi-modality data. Applied to various multi-modality datasets (e.g., Patch-seq, multiome ATAC + gene expression, and spatial transcriptomics), UnitedNet demonstrates similar or better accuracy in multi-modal integration and cross-modal prediction compared with state-of-the-art methods. Moreover, by dissecting the trained UnitedNet with the explainable machine learning algorithm, we can directly quantify the relationship between gene expression and other modalities with cell-type specificity. UnitedNet is a comprehensive end-to-end framework that could be broadly applicable to single-cell multi-modality biology. This framework has the potential to facilitate the discovery of cell-type-specific regulation kinetics across transcriptomics and other modalities.

     
    more » « less
  2. Abstract

    Single-cell technologies characterize complex cell populations across multiple data modalities at unprecedented scale and resolution. Multi-omic data for single cell gene expression, in situ hybridization, or single cell chromatin states are increasingly available across diverse tissue types. When isolating specific cell types from a sample of disassociated cells or performing in situ sequencing in collections of heterogeneous cells, one challenging task is to select a small set of informative markers that robustly enable the identification and discrimination of specific cell types or cell states as precisely as possible. Given single cell RNA-seq data and a set of cellular labels to discriminate, scGeneFit selects gene markers that jointly optimize cell label recovery using label-aware compressive classification methods. This results in a substantially more robust and less redundant set of markers than existing methods, most of which identify markers that separate each cell label from the rest. When applied to a data set given a hierarchy of cell types as labels, the markers found by our method improves the recovery of the cell type hierarchy with fewer markers than existing methods using a computationally efficient and principled optimization.

     
    more » « less
  3. Abstract

    Integrating single-cell multi-omics data is a challenging task that has led to new insights into complex cellular systems. Various computational methods have been proposed to effectively integrate these rapidly accumulating datasets, including deep learning. However, despite the proven success of deep learning in integrating multi-omics data and its better performance over classical computational methods, there has been no systematic study of its application to single-cell multi-omics data integration. To fill this gap, we conducted a literature review to explore the use of multimodal deep learning techniques in single-cell multi-omics data integration, taking into account recent studies from multiple perspectives. Specifically, we first summarized different modalities found in single-cell multi-omics data. We then reviewed current deep learning techniques for processing multimodal data and categorized deep learning-based integration methods for single-cell multi-omics data according to data modality, deep learning architecture, fusion strategy, key tasks and downstream analysis. Finally, we provided insights into using these deep learning models to integrate multi-omics data and better understand single-cell biological mechanisms.

     
    more » « less
  4. Abstract

    Large-scale scRNA-seq studies typically generate data in batches, which often induce nontrivial batch effects that need to be corrected. Given the global efforts for building cell atlases and the increasing number of annotated scRNA-seq datasets accumulated, we propose a supervised strategy for scRNA-seq data integration called SIDA (SupervisedIntegration usingDomainAdaptation), which uses the cell type annotations to guide the integration of diverse batches. The supervised strategy is based on domain adaptation that was initially proposed in the computer vision field. We demonstrate that SIDA is able to generate comprehensive reference datasets that lead to improved accuracy in automated cell type mapping analyses.

     
    more » « less
  5. null (Ed.)
    Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets or transfer knowledge from one to the other to better understand cellular identity and functions. Here, we present a simple yet surprisingly effective method named common factor integration and transfer learning (cFIT) for capturing various batch effects across experiments, technologies, subjects, and even species. The proposed method models the shared information between various datasets by a common factor space while allowing for unique distortions and shifts in genewise expression in each batch. The model parameters are learned under an iterative nonnegative matrix factorization (NMF) framework and then used for synchronized integration from across-domain assays. In addition, the model enables transferring via low-rank matrix from more informative data to allow for precise identification in data of lower quality. Compared with existing approaches, our method imposes weaker assumptions on the cell composition of each individual dataset; however, it is shown to be more reliable in preserving biological variations. We apply cFIT to multiple scRNA-seq datasets of developing brain from human and mouse, varying by technologies and developmental stages. The successful integration and transfer uncover the transcriptional resemblance across systems. The study helps establish a comprehensive landscape of brain cell-type diversity and provides insights into brain development. 
    more » « less